|
Teaching:
Mathematische Methoden |
|
Current issues:
- The repeat exam takes place on the 12.10.16 in PHY 9.2.01,
10:00-12:00 st.
- Results of exam see below. View into exam:
Mo, 25.07, 13:00-13:30, my office. The date of the repeat exam has
to be shifted to either the 10.10. or 12.10. Please contact me
until the 26.07 if this causes an overlap with other exams for you.
- The registration deadline has been prolonged,
see [Flexnow]
for more details.
Class data:
exercises No. 52101,
credits: 10,
4SWS.
Lecture:
time |
room |
Wed 10:00-12:00 c.t. |
Physik, PHYG - PHY 9.2.01 |
Thu 10:00-12:00 c.t. |
Physik, PHYG - H34 |
Exercises:
time |
room |
group tutor |
Mon 10:00-12:00 c.t., |
Physik, PHYG - PHY 9.2.01, |
Bernhard
Lang/Cosimo
Gorini [Zentralübung (52103)] |
Tue 15:00-17:00 s.t., |
Physik, PHYG - PHY 9.1.10, |
Cosimo
Gorini |
Wed 17:00-19:00 c.t., |
Physik, PHYG - H33, |
Moritz
Frankerl |
Fr 12:45-14:45 s.t., |
Physik, PHYG - PHY 5.0.20, |
Maximilian
Emmerich |
Fr 15:00-17:00 c.t., |
Physik, PHYG - PHY 9.1.09, |
N.N. |
Exam
Exam takes place on the 21.07.16,
10:00 s.t. in H34.
Registration for the exam is possible after the 25.04.
The repeat exam takes place on the 12.10.16 in PHY 9.2.01,
10:00-12:00 st.
Question time
time |
room |
Mo 10:00-12:00 c.t. |
Physik, PHYG - PHY 9.2.01 (Zentralübung (52103)) |
Literature
- Christian Lang, Norbert
Pucker: Mathematische
Methoden in der Physik, Springer 2005
- Jänich: Mathematik 1, Springer
- H. Schulz: Physik
mit Bleistift, Verlag Harri Deutsch, 2006
- Königsberger: Analysis 1,2, Springer
- Otto Forster: Analysis 1, Vieweg
- Gerd Fischer:
Lineare Algebra, Vieweg
-
Complex numbers multiplication
<--->
From the Taylor expansion of the $\exp$-function at $x=1$ we know that
$\exp(x)=\lim\limits_{n \rightarrow \infty}{\left(1+ \frac{x}{n}
\right)^n}$. This gives us a nice graphical interpretation of the
relation $\exp(i\pi)=-1$ since $\exp(i\pi)=\lim\limits_{n
\rightarrow \infty}{\left(1+ i\frac{\pi}{n} \right)^n}$. Doing a
finite ($n_{\text{max}}$ is finite) multiplication of numbers
$\left(1+ i\frac{\pi}{n} \right)$ looks as
follows: complex_mult.cdf
[To open the cdf file download the player by clicking on the pic below
or open it in Mathematica].
We see how $\left(1+ i\frac{\pi}{n}
\right)^n$ is approaching -1.
-
Taylor expansion
<--->
Taylor expansion of
[To open the cdf file download the player by clicking on the pic below
or open it in Mathematica].
- Historical notes on trigonometric
functions: wiki
- Example of a product of two Levi-Civita tensors with
contractions: demonstrations.wolfram.com
- Curvature and torsion of different curves: demonstrations.wolfram.com
Last modified: Thu Jul 28 10:44:36 UTC 2016
|
|