Homepage

   Contact

   Research

   Links

     Teaching

   CV

   Publications


Teaching:
Mathematische Methoden
icon

Current issues:

  • The repeat exam takes place on the 12.10.16 in PHY 9.2.01, 10:00-12:00 st.
  • Results of exam see below. View into exam: Mo, 25.07, 13:00-13:30, my office. The date of the repeat exam has to be shifted to either the 10.10. or 12.10. Please contact me until the 26.07 if this causes an overlap with other exams for you.
  • The registration deadline has been prolonged, see [Flexnow] for more details.

Class data:

exercises No. 52101,

credits: 10,

4SWS.

Lecture:

time room
Wed 10:00-12:00 c.t. Physik, PHYG - PHY 9.2.01
Thu 10:00-12:00 c.t. Physik, PHYG - H34

Exercises:

time room group tutor
Mon 10:00-12:00 c.t., Physik, PHYG - PHY 9.2.01, Bernhard Lang/Cosimo Gorini [Zentralübung (52103)]
Tue 15:00-17:00 s.t., Physik, PHYG - PHY 9.1.10, Cosimo Gorini
Wed 17:00-19:00 c.t., Physik, PHYG - H33, Moritz Frankerl
Fr 12:45-14:45 s.t., Physik, PHYG - PHY 5.0.20, Maximilian Emmerich
Fr 15:00-17:00 c.t., Physik, PHYG - PHY 9.1.09, N.N.

Exam

Exam takes place on the 21.07.16, 10:00 s.t. in H34.
Registration for the exam is possible after the 25.04.

The repeat exam takes place on the 12.10.16 in PHY 9.2.01, 10:00-12:00 st.

Question time

time room
Mo 10:00-12:00 c.t. Physik, PHYG - PHY 9.2.01 (Zentralübung (52103))

Literature

  • Christian Lang, Norbert Pucker: Mathematische Methoden in der Physik, Springer 2005
  • Jänich: Mathematik 1, Springer
  • H. Schulz: Physik mit Bleistift, Verlag Harri Deutsch, 2006
  • Königsberger: Analysis 1,2, Springer
  • Otto Forster: Analysis 1, Vieweg
  • Gerd Fischer: Lineare Algebra, Vieweg



Exercise sheets


Add-on

  • Complex numbers multiplication <--->
      From the Taylor expansion of the $\exp$-function at $x=1$ we know that $\exp(x)=\lim\limits_{n \rightarrow \infty}{\left(1+ \frac{x}{n} \right)^n}$. This gives us a nice graphical interpretation of the relation $\exp(i\pi)=-1$ since $\exp(i\pi)=\lim\limits_{n \rightarrow \infty}{\left(1+ i\frac{\pi}{n} \right)^n}$. Doing a finite ($n_{\text{max}}$ is finite) multiplication of numbers $\left(1+ i\frac{\pi}{n} \right)$ looks as follows: complex_mult.cdf
      [To open the cdf file download the player by clicking on the pic below or open it in Mathematica]. We see how $\left(1+ i\frac{\pi}{n} \right)^n$ is approaching -1.
  • Taylor expansion <--->
      Taylor expansion of [To open the cdf file download the player by clicking on the pic below or open it in Mathematica].
  • Historical notes on trigonometric functions: wiki
  • Example of a product of two Levi-Civita tensors with contractions: demonstrations.wolfram.com
  • Curvature and torsion of different curves: demonstrations.wolfram.com

Exam results and solutions


Last modified:   Thu Jul 28 10:44:36 UTC 2016