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Introduction
In this talk we will introduce the notion of a Galois cover. The classification of sub-
covers of a Galois cover is a topological analogon to the classification of subextensions
of Galois extensions of fields. The main goal of this talk is to proof [Sza09, Theorem
2.2.10]. To highlight this analogy, we will compare [Sza09, Theorem 2.2.10] to its
algebraic counterpart [Sza09, Theorem 1.3.11].

1 Basics About Connected Covers
In this chapter we give (a reminder of) the most important definitions and observations
in the setting of connected covers.

Convention. The emptyset ∅ as a topological space is not connected.

Definition 1.1. For a cover p : Y → X we define

Aut(p) = {f : Y → Y | f is a homeomorphism with p ◦ f = p}

to be the group of automorphisms of p.

Remark. We note that by the definition of Aut(p), for each x ∈ X we obtain a (left)
group action Aut(p) y p−1(x) by

− · − : Aut(p)× p−1(x)→ p−1(x)

(f, y) 7→ f(y)

Remark. Let p : Y → X be a cover and x ∈ X.
Then by the definition of a cover there always exists an open neighborhood V of x

such that there exists a family (Ui)i∈I of open subsets of Y fulfilling

• p−1(V ) =
⋃̇

i∈IUi

• p|Ui
restricts to a homeomorphism onto V for each i ∈ I.

We will call such a family (Ui)i∈I a trivialization of p around x.

Remark (Implications for Connected Covers). For a possibly non-surjective connected
cover p : Y → X (meaning X and Y are connected) one can show that p is surjective
regardless. Furthermore one can proof that the cardinality of the fibre I is the same
everywhere. Both statements actually only require connectedness of X.

Proposition 1.2 ([Sza09, Proposition 2.2.2]). Let p : Y → X be a cover, let Z be a
connected topological space and f, g : Z → Y continuous maps with p ◦ f = p ◦ g. If
there exists z ∈ Z such that f(z) = g(z), then f = g.
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Proof. Let z ∈ Z with f(z) = g(z) = y. Because p is a cover, we can pick a trivializa-
tion (Ui)i∈I of p around p(y).

As y ∈
⋃̇

i∈IUi, there exists a unique i ∈ I with y ∈ Ui. Set W = f−1(Ui)∩g−1(Ui).
Since (p ◦ f)|W = p|Ui

◦ f |W and (p ◦ g)W = p|Ui
◦ g|W , we obtain f |W = g|W from

p ◦ f = p ◦ g as p|Ui is a homeomorphism.
This shows that the set A = {z ∈ Z | f(z) = g(z)} is open, because each element of

A admits an open neighborhood that is contained A.
Now let z′ ∈ Ac, which means f(z′) 6= g(z′) = y′. Because p is a cover, we obtain a

trivialization (U ′
i)i∈I around y′.

Assume there exists j ∈ I such that f(z′) ∈ U ′
j and g(z′) ∈ U ′

j . Because p restricted
to U ′

j is bijective, this implies (p ◦ f)(z′) 6= (p ◦ g)(z′), which is a contradiction to our
assumptions.

Thus for j, k ∈ I with f(z′) ∈ U ′
j and f(z′) ∈ U ′

k by setting W = f−1(U ′
j)∩ g−1(U ′

k)
we have f(w) 6= g(w) for all w ∈W , which shows that Ac is also open.

Because A is not empty and Z is connected we conclude Z = A which proves the
proposition.

Lemma 1.3 ([Sza09, Lemma 2.2.1]). Let p : Y → X be a connected cover and
φ ∈ Aut(p). If f has a fixed point, then f = idY .

Proof. Apply Proposition 1.2 with Z = Y , f = idY and g = φ.

2 Galois Covers
In the following we introduce the notion of Galois covers characterize them as the
covers with automorphism group acting transitively on the fibres.

Proposition 2.1 ([Sza09, Proposition 2.2.3]). Let p : Y → X be a connected cover.
Then the action Aut(p) y Y is even.

Proof. For y ∈ Y choose a trivialization (Ui)i∈I around p(y). Let i ∈ I such that
y ∈ Ui and choose f ∈ Aut(p) with f(Ui) ∩ Ui 6= ∅.

For x ∈ f(Ui)∩Ui we have f−1(x) ∈ Ui as well as x ∈ Ui. Because (p◦f−1)(x) = p(x)
and p restricted to Ui is bijective, we have f−1(x) = x. By Lemma 1.3 we thus have
f−1 = idY .

This shows that Ui is an open neighborhood of y such that for f ∈ Aut(p) with
f(Ui) ∩ Ui 6= ∅ we have f = idY , thus Aut(p) y Y is even.

Proposition 2.2 ([Sza09, Proposition 2.2.4]). Let G be a group acting evenly on a
connected space Y . Then

F : G→ Aut(pG)
g 7→ (y 7→ g · y)

is a group isomorphism, where pG : Y → G \ Y is the canonical projection.
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Proof. By [Sza09, Lemma 2.1.7] we know that pG is indeed a cover.
It is clear that F is a well defined group homomorphism, as p ◦ F (g) = p holds by

definition of G \ Y . Thus it suffices to show bijectivity.
For injectivity, let g ∈ G with F (g) = idY . Because the action of G is even, it is

free and thus g = e.
For surjectivity pick φ ∈ Aut(pG) and let y ∈ Y be arbitrary. As (p ◦ φ)(y) = p(y),

φ(y) is in the orbit of y by the action of G and thus we can find a g ∈ G with
F (g)(y) = φ(y). Then by Lemma 1.3 we have φ = F (g), which finishes the proof.

Remark. Provided a connected cover p : Y → X, we can form the quotient by
the even (see Proposition 2.1) action Aut(p) y Y . Let [y] ∈ Aut(p) \ Y be the
orbit of y ∈ Y . For y1, y2 ∈ [y] there is an f ∈ Aut(p) with y1 = f(y2) and thus
p(y1) = (p ◦ f)(y2) = p(y2). Therefore, by the universal property of the quotient
Aut(p) \ Y we obtain a unique continuous map p : Aut(p) \ Y → X such that

Y X

Aut(p) \ Y

pAut(p)

p

p

commutes. By Proposition 2.2 we have Aut(pAut(p)) ∼= Aut(p).

Definition 2.3. A cover p : Y → X is Galois if it is connected and the induced map
p : Aut(p) \ Y → X of the preceding remark is a homeomorphism.

Example 2.4. In the setting of Proposition 2.2 the map pG is a Galois cover as
Aut(pG) = G and pG = idG\Y .

Proposition 2.5 ([Sza09, Proposition 2.2.7]). A connected cover p : Y → X is Galois
if and only if Aut(p) acts transitively on all fibres of p.

Proof. Acting transitively on a fibre p−1(x) is equivalent to statement that the orbit
of any y ∈ p−1(x) is the whole fibre. This is equivalent to p being bijective by the
definition of Aut(p) \ Y . Therefore if p is a homeomorphism (and therefore bijective)
p is Galois.

For the other implication, it suffices to show that p is an open map, as a continuous
map that is open and and bijective is a homeomorphism. Let U ⊂ Aut(p)\Y be open.
Then p(U) = p(p−1

Aut(p)(U)) and because p is a cover and thus open, p(U) is open and
the proposition follows.

3 Classification of Connected Subcovers
In this last section we will prove some preliminary lemmas used in the main result of
this talk, the classification of connected subcovers of a Galois cover. Finally, we will
compare this result to its algebraic counterpart.
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Lemma 3.1 ([Sza09, Lemma 2.2.11]). Let q : Z → X be a connected cover with X
locally connected and let f : Y → Z be a continuous map such that q ◦ f is also a
cover. Then f is a cover.

Proof. Let z ∈ im f , x = q(z) and V be a connected open set that admits both a
trivialization (Ui)i∈I of p = q ◦ f and a trivialization (Vj)j∈J of q around x. Such a
set V exists because p and q are covers and X is locally connected.

We have decompositions p−1(V ) =
⋃̇

i∈IUi and q−1(V ) =
⋃̇

j∈JVj and because Ui

is connected (as it is homeomorphic to V ), f(Ui) is also connected. Let j ∈ J be the
unique index such that z ∈ Vj . Because z ∈ im f we know f−1(Vj) is nonempty.

Pick an i ∈ I with f−1(Vj) ∩ Ui 6= ∅. Due to f(Ui) ⊂
⋃̇

j∈JVj and the fact that
f(Ui) is connected, f(Ui) ⊂ Vj as it is the connected component containing z. Now
q|Vj ◦f |Ui = p|Ui and thus f |Ui = q|−1

Vj
◦p|Ui which shows that f |Ui is a homeomorphism

onto its image Vj .
From this and f−1(Vj) ⊂ p−1(V ) we obtain that f−1(Vj) =

⋃̇
{i∈I|f(Ui)=Vj}Ui is a

trivialization around z ∈ Z.
It thus remains to show that f is surjective.
From what we have already proven we observe that im f is open. For z /∈ im f

the argument above shows that im f ∩ Vj = ∅, where Vj is again the component of
q−1(V ) containing z (otherwise Vj ⊂ im f). Thus (im f)c is open as well, which implies
im f = Z by connectedness of Z.

This finishes the proof.

Lemma 3.2. Let q : Y → Z be a Galois cover with X and Z locally connected and
let f : Z → X be a continuous map such that f ◦ q is a cover. Then f is a cover.

Proof. For x ∈ X choose an open connected neigborhood V that admits a trivializa-
tion (Ui)i∈I of p around x. Let f−1(V ) =

⋃̇
j∈JVj where the Vj are the connected

components of f−1(V ). These are open because Z is locally connected.
By the same connectedness arguments as in Lemma 3.1, we know that for every i ∈ I

there exists a unique j ∈ J such that q(Ui) ⊂ Vj . We want to show that q(Ui) = Vj ,
because then we can pick a subset I ′ ⊂ I such that (q(Ui))i∈I′ is a disjoint family.

Let z ∈ Vj . Due to f−1(V ) = q
(⋃̇

i∈IUi

)
there is a k ∈ I and y ∈ Uk such that

q(y) ∈ Vj , which implies q(Uk) ⊂ Vj . If there is x ∈ q(Ui) ∩ q(Uk), we can pick
φ ∈ Aut(q) ⊂ Aut(p) such that Uk = φ(Ui). We then have φ(Ui) ∩ Ui 6= ∅ which
implies φ = id and thus k = i. Therefore Vj can be decomposed as a disjoint union of
open sets (p(Ul))l∈L with L ⊂ I and i ∈ L, which by connectedness of Vj implies that
p(Ui) = Vj .

Now we can obtain a trivialization of Vj by picking I ′ ⊂ I such that (q(Ui))i∈I′ . As
q|Ui

: Ui → Vj is bijective and thus a homeomorphism, f |Vj
must be a homeomorphism

because f |Vj
◦ q|Ui

= p|Ui
.

This finishes the proof.

Remark. In the situation of Proposition 2.5, it suffices for Aut(p) to act transitively
on a single fibre. Because pAut(p) : Y → Aut(p) \ Y is Galois, by Lemma 3.2 the map
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p is a cover. Then the fibre of the induced map p is a one point set everywhere (as p
is a connected cover, it suffices to know the fibre at a single point). This again shows
that p is bijective.

Definition 3.3. For a cover p : Y → X let Subcov(p) be the category whose

• objects are pairs (q, f) with q : Z → X a connected cover and f : Y → Z a
continuous map with q ◦ f = p

• morphisms between objects (q1, f1), (q2, f2) are continuous maps g : Z1 → Z2

such that q2 ◦ g = q1 and g ◦ f1 = f2.

Remark. In Definition 3.3, from q ◦ f = p and Lemma 3.1 we have that f is a cover.
Similarly, a morphism g : Z1 → Z2 that is a morphism from (q1, f1) to (q2, f2) is also
cover. Thus all morphisms occuring in Definition 3.3 are covers.

The next theorem is the main part of the talk.

Proposition 3.4 ([Sza09, Essentially Theorem 2.2.10]). Let p : Y → X be a Galois
cover with X locally connected. Then

• for each subgroup H ⊂ Aut(p) = G, the map pH : H \ Y → X is a connected
cover.

• if q : Z → X is a connected cover such that

Y X

Z

f

p

q

commutes for a continuous map f : Y → Z, then f is a Galois cover and q ∼= pH
in Subcov(p) for H = Aut(f) ⊂ Aut(p) = G. The cover q is Galois if and only if
H is a normal subgroup of G and in this case we have Aut(q) ∼= G�H.

Furthermore, the above gives mutually inverse equivalences of categories

{Subgroups of G} ←→ Subcov(p)
H 7−→ (pH , pH)

Aut(f) 7−→ (q, f)

where we view {Subgroups of G} as a category via the partial ordering induced by
inclusions of subgroups of G.

Proof. We have the following commutative diagram illustrating the most important
maps:
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Y X

H \ Y

Aut(p) \ Y

p

pH

pAut(p)

qH

pH

p

∼=

We first show that for H ⊂ G the map pH : H \ Y → X is a cover. We know that
pH is a cover due to [Sza09, Lemma 2.1.7] as H acts evenly on Y . Because H acts
transitively on the fibres of pH by construction, pH is Galois (see Example 2.4). Thus
because pH ◦ pH = p we have that pH is a cover from Lemma 3.2.

Next we proof that a continuous map f with q ◦ f = p is a Galois cover. From
Lemma 3.1 it follows that f is a cover. By Proposition 2.5 it thus suffices to check
transitivity of the action of H = Aut(f) on fibre of f . Let z ∈ Z and y1, y2 ∈ f−1(z).
We have y1, y2 ∈ p−1(q(z)) and because p is Galois there is an g ∈ G with g(y1) = y2.
We have to show that g ∈ H. As (f ◦g)(y1) = f(y1) and q◦f ◦g = q◦f , Proposition 1.2
shows that f ◦ g = f and thus g ∈ H.

Next we show that (q, f) ∼= (pH , pH) for H = Aut(f) induced by a map f : Y → Z
with q ◦ f = p (which we know to be a Galois cover). From the universal property
of quotients we obtain a map f : H \ Y → Z which is a homeomorphism as f is
Galois. Because p = q ◦ f ◦ pH and p = pH ◦ pH we obtain from surjectivity of pH that
q ◦ f = pH , proving (q, f) ∼= (pH , pH).

We now proof that for (q, f), q is Galois if and only if Aut(f) = H ⊂ G is normal.
First, let q be Galois. Our goal is the construct a group homomorphism A : Aut(p)→
Aut(q) mit kerA = H, which shows H is normal. Let φ ∈ Aut(p) and y ∈ Y , then
f(y), f(φ(y)) ∈ q−1(f(y)). By transitivity of q on its fibres there exists a φ̃ ∈ Aut(q)
with φ̃(f(y)) = f(φ(y)). Therefore by Proposition 1.2 for each φ ∈ Aut(p) there is a
unique φ̃ ∈ Aut(q) with φ̃ ◦ f = f ◦ φ. This construction gives us a map A : Aut(p)→
Aut(q). We now show that this is a group homomorphism. We have A(φ1 ·φ2)(f(y)) =

φ̃1 · φ2(f(y)) = f ((φ1 · φ2)(y)) = φ̃1(f(φ2)(y)) = φ̃1(φ̃2(f(y))) = A(φ1) · A(φ2) and
thus A(φ1 · φ2) = A(φ1) ·A(φ2).

It remains to show that kerA = H. For φ ∈ kerA, we know f = f ◦ φ and thus
f ∈ Aut(f). Conversly for τ ∈ H by uniqueness we have A(τ) = idY . Therefore if q is
Galois then H is normal and Aut(q) ∼= Aut(p)�Aut(f).

Next we show that if Aut(f) = H ⊂ G is normal, then q is Galois.
The action G y Y induces an action G�H y H \ Y . That this action is even can

be seen by projecting an open U ⊂ Y with g ·U ∩U = ∅ for all g ∈ G \ {e} onto H \Y
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via pH . We have a group isomorphism

Aut(pH)→ Aut(q)

g 7→ f ◦ g ◦ f−1

because f is a homeomorphism fulfilling f ◦pH = f and q◦f = pH . As G�H\(H \ Y ) ∼=
X via the projection induced by pH , we know that the canonical map Aut(q)\Z → X
is bijective and thus also a homeomorphism as it is open. Therefore q is Galois.

We now show functioriality of

F : {Subgroups of G} → Subcov(p)
H 7→ (pH , pH) .

By construction it is clear that F (idH) = id(pH ,pH). Thus it suffices to proof compat-
ibility with inclusions. For H ⊂ K ⊂ L subgroups in G, we have that F (H ⊂ K) ◦
F (K ⊂ L) = (H \ Y → K \ Y ) ◦ (K \ Y → L \ Y ) = (H \ Y → L \ Y ) = F (H ⊂ L)
as the maps are projections. This proves functioriality of F .

Next we show the functioriality of

G : Subcov(p)→ {Subgroups of G}
(q, f) 7→ Aut(f) .

Here we also have G(id(q,f)) = idAut(f) by construction. We first show that a map
g : (q1, f1)→ (q2, f2) induces an inclusion Aut(f1) ⊂ Aut(f2).

Let φ ∈ Aut(f1). Then f1 ◦ φ = f1 implies g ◦ f1 ◦ φ = g ◦ f1, which by g ◦ f1 = f2
proves φ ∈ Aut(f2). Thus for maps g1 : (q1, f1) → (q2, f2) and g2 : (q2, f2) → (q3, f3)
we have Aut(f1) ⊂ Aut(f2) ⊂ Aut(f3) which proves functioriality of G.

Lastly we show that F and G are mutually inverse equivalences of categories. From
what we have already proven, we know that G ◦ F = id{Subgroups of G}.

Thus we only need to show G◦F ' idSubcov(p). For g : Z1 → Z2 a map from (q1, f1)
to (q2, f2) the square

(pAut(f1), pAut(f1)) (q1, f1)

(pAut(f2), pAut(f2)) (q2, f2)

f1

f2

g

where

• f1 : Aut(f1) \ Y → Z1 and f2 : Aut(f2) \ Y → Z2 are homeomorphisms as f1
and f2 are Galois
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• the left vertical map Aut(f1) \ Y → Aut(f2) \ Y is the projection induced by
Aut(f1) ⊂ Aut(f2)

commutes. As the horizontal maps are isomorphisms in Subcov(p) we thus have proven
G ◦ F ' idSubcov(p).

We now state the algebraic counterpart to our main result Proposition 3.4 as in
[Sza09, Theorem 1.3.11].

Theorem ([Sza09, Theorem 1.3.11] (Krull)). Let L be a subextension of the Galois
extension K|k. Then Gal(K|L) is a closed subgroup of Gal(K|k). Moreover, the maps

L 7→ H := Gal(K|L) and H 7→ L := KH

yield an inclusion-reversing bijection between subfields K ⊃ L ⊃ k and closed sub-
groups H ⊂ G. A subextension L|k is Galois over k if and only if Gal(K|L) is normal in
Gal(K|k); in this case there is a natural isomorphism Gal(L|k) ∼= Gal(K|k)�Gal(K|L).

Remark (Comparison of Proposition 3.4 to [Sza09, Theorem 1.3.11]). In the following
we will highlight the similarity between the aforementioned theorems. We use the same
notions as in the respective theorems.

Cover Theory Field Extensions

Galois cover p : Y → X Galois extension K|k

(q, f) ∈ Subcov(p) Subextension K ⊃ L ⊃ k

(q, f) 7→ Aut(f) L 7→ Gal(K|L)

H 7→ (pH , pH) H 7→ KH

q Galois iff Aut(f) ⊂ Aut(p) normal L|k Galois iff Gal(K|L) ⊂ Gal(K|k) normal

For q Galois Aut(q) ∼= Aut(p)�Aut(f) For L|k Galois Gal(L|k) ∼= Gal(K|k)�Gal(K|L)

Outlook. This correspondence will be made precise in the later parts of the seminar.
The bridge will be provided by Riemann surfaces.
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