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Introduction

In this talk we will introduce the notion of a Galois cover. The classification of sub-
covers of a Galois cover is a topological analogon to the classification of subextensions
of Galois extensions of fields. The main goal of this talk is to proof [Sza09, Theorem
2.2.10]. To highlight this analogy, we will compare [Sza09, Theorem 2.2.10] to its
algebraic counterpart [Sza09, Theorem 1.3.11].

1 Basics About Connected Covers

In this chapter we give (a reminder of) the most important definitions and observations
in the setting of connected covers.

Convention. The emptyset () as a topological space is not connected.

Definition 1.1. For a cover p: Y — X we define
Aut(p) ={f:Y = Y | f is a homeomorphism with po f = p}

to be the group of automorphisms of p.

Remark. We note that by the definition of Aut(p), for each x € X we obtain a (left)
group action Aut(p) ~ p~1(z) by

——: Aut(p) x p~Hz) = p~H(z)
(fsy) = f(y)

Remark. Let p: Y — X be a cover and z € X.
Then by the definition of a cover there always exists an open neighborhood V of z
such that there exists a family (U;),.; of open subsets of Y fulfilling

« p (V) =Ue, Ui
o ply, restricts to a homeomorphism onto V for each i € I.
We will call such a family (U;),c; a trivialization of p around x.

Remark (Implications for Connected Covers). For a possibly non-surjective connected
cover p: Y — X (meaning X and Y are connected) one can show that p is surjective
regardless. Furthermore one can proof that the cardinality of the fibre I is the same
everywhere. Both statements actually only require connectedness of X.

Proposition 1.2 (|Sza09, Proposition 2.2.2]). Let p: Y — X be a cover, let Z be a
connected topological space and f,g : Z — Y continuous maps with po f = pog. If
there exists z € Z such that f(z) = g(z), then f = g.



Proof. Let z € Z with f(z) = g(z) = y. Because p is a cover, we can pick a trivializa-
tion (Ui)z‘el of p around p(y).

Asy e UieIUi7 there exists a unique i € I with y € U;. Set W = f~1(U;)Ng~1(U,).
Since (po f)|lw = plu, o flw and (po g)w = plu, © glw, we obtain flw = g|w from
po f=pogas ply, is a homeomorphism.

This shows that the set A ={z € Z | f(z) = g(z)} is open, because each element of
A admits an open neighborhood that is contained A.

Now let 2z’ € A°, which means f(2’) # g(z') = ¢'. Because p is a cover, we obtain a
trivialization (U;),.; around y'.

Assume there exists j € I such that f(2’) € U] and g(2') € U]. Because p restricted
to U} is bijective, this implies (p o f)(z’) # (p o g)(z’), which is a contradiction to our
assumptions.

Thus for j,k € I with f(2') € U} and f(z') € U, by setting W = f~1(U})ng~' (U})
we have f(w) # g(w) for all w € W, which shows that A° is also open.

Because A is not empty and Z is connected we conclude Z = A which proves the
proposition. [

Lemma 1.3 ([Sza09, Lemma 2.2.1]). Let p : ¥ — X be a connected cover and
¢ € Aut(p). If f has a fixed point, then f =idy.

Proof. Apply Proposition [[.2] with Z =Y, f = idy and g = ¢. O

2 Galois Covers

In the following we introduce the notion of Galois covers characterize them as the
covers with automorphism group acting transitively on the fibres.

Proposition 2.1 ([Sza09, Proposition 2.2.3]). Let p: Y — X be a connected cover.
Then the action Aut(p) ~ Y is even.

Proof. For y € Y choose a trivialization (U;);; around p(y). Let i € I such that
y € U; and choose f € Aut(p) with f(U;) NU; # 0.

For z € f(U;)NU; we have f~1(x) € U; as well as x € U;. Because (pof~!)(z) = p(x)
and p restricted to U; is bijective, we have f~!(z) = . By Lemma we thus have
f_l =idy.

This shows that U; is an open neighborhood of y such that for f € Aut(p) with
F(U;)NU; # 0 we have f =idy, thus Aut(p) ~ Y is even. O

Proposition 2.2 ([Sza09, Proposition 2.2.4]). Let G be a group acting evenly on a
connected space Y. Then

F: G — Aut(pg)
g y—g-y)

is a group isomorphism, where pg : Y — G\ Y is the canonical projection.



Proof. By |Sza09, Lemma 2.1.7] we know that pg is indeed a cover.

It is clear that F' is a well defined group homomorphism, as p o F'(g) = p holds by
definition of G\ Y. Thus it suffices to show bijectivity.

For injectivity, let g € G with F(g) = idy. Because the action of G is even, it is
free and thus g = e.

For surjectivity pick ¢ € Aut(pg) and let y € Y be arbitrary. As (po ¢)(y) = p(y),
@(y) is in the orbit of y by the action of G and thus we can find a ¢ € G with
F(g)(y) = ¢(y). Then by Lemma [1.3[ we have ¢ = F(g), which finishes the proof. [

Remark. Provided a connected cover p : ¥ — X, we can form the quotient by
the even (see Proposition action Aut(p) ~ Y. Let [y] € Aut(p) \ Y be the
orbit of y € Y. For y;,y2 € [y] there is an f € Aut(p) with y1 = f(y2) and thus
p(y1) = (po f)(y2) = p(y2). Therefore, by the universal property of the quotient
Aut(p) \' Y we obtain a unique continuous map p : Aut(p) \ Y — X such that

Y

PAut(p) e

Aut(p)\ Y

commutes. By Proposition We have Aut(paut(p)) = Aut(p).

Definition 2.3. A cover p:Y — X is Galois if it is connected and the induced map
p: Aut(p) \ Y — X of the preceding remark is a homeomorphism.

Example 2.4. In the setting of Proposition the map pg is a Galois cover as
Aut(pg) = G and pg = idg\y-

Proposition 2.5 (|Sza09, Proposition 2.2.7]). A connected cover p : ¥ — X is Galois
if and only if Aut(p) acts transitively on all fibres of p.

Proof. Acting transitively on a fibre p~1(z) is equivalent to statement that the orbit
of any y € p~1(x) is the whole fibre. This is equivalent to p being bijective by the
definition of Aut(p) \ Y. Therefore if P is a homeomorphism (and therefore bijective)
p is Galois.

For the other implication, it suffices to show that p is an open map, as a continuous
map that is open and and bijective is a homeomorphism. Let U C Aut(p)\Y be open.
Then p(U) = p(pgit(p)(U)) and because p is a cover and thus open, p(U) is open and
the proposition follows. O

3 Classification of Connected Subcovers
In this last section we will prove some preliminary lemmas used in the main result of

this talk, the classification of connected subcovers of a Galois cover. Finally, we will
compare this result to its algebraic counterpart.



Lemma 3.1 ([Sza09, Lemma 2.2.11]). Let ¢ : Z — X be a connected cover with X
locally connected and let f : Y — Z be a continuous map such that g o f is also a
cover. Then f is a cover.

Proof. Let z € im f, x = ¢(z) and V be a connected open set that admits both a
trivialization (U;)ier of p = g o f and a trivialization (V});jes of ¢ around z. Such a
set V exists because p and g are covers and X is locally connected.

We have decompositions p~"(V) = ;Ui and ¢~ (V) = U, ;V; and because U;
is connected (as it is homeomorphic to V'), f(U;) is also connected. Let j € J be the
unique index such that z € V;. Because z € im f we know f ’1(Vj) is nonempty.

Pick an i € I with f~1(V;) N U; # 0. Due to f(U;) C UjeJVj and the fact that
f(U;) is connected, f(U;) C V; as it is the connected component containing z. Now
qlv,o flu, = plu, and thus f|y, = q|(,j1 op|y, which shows that f|y, is a homeomorphism
onto its image V.

From this and f~1(V;) C p~}(V) we obtain that f~1(V;) = U{iel|f(U,-):Vj}Ui is a
trivialization around z € Z.

It thus remains to show that f is surjective.

From what we have already proven we observe that im f is open. For z ¢ im f
the argument above shows that im f N'V; = 0, where V; is again the component of
¢ (V) containing z (otherwise V; C im f). Thus (im f)¢ is open as well, which implies
im f = Z by connectedness of Z.

This finishes the proof. O

Lemma 3.2. Let ¢ : Y — Z be a Galois cover with X and Z locally connected and
let f:Z — X be a continuous map such that f o q is a cover. Then f is a cover.

Proof. For x € X choose an open connected neigborhood V' that admits a trivializa-
tion (U;)ier of p around z. Let f~1(V) = Ujes V5 where the V; are the connected
components of f~1(V). These are open because Z is locally connected.

By the same connectedness arguments as in Lemma|3.1] we know that for every ¢ € T
there exists a unique j € J such that ¢(U;) C V;. We want to show that ¢(U;) =V,
because then we can pick a subset I’ C I such that (q(U;));c;. is a disjoint family.

Let z € V;. Due to f~1(V) =¢ (UieIUi) there is a k € I and y € Uj, such that
q(y) € Vj, which implies ¢(Ux) C V;. If there is € ¢(U;) N q(Uy), we can pick
¢ € Aut(q) C Aut(p) such that U, = ¢(U;). We then have ¢(U;) N U; # ) which
implies ¢ = id and thus k = 4. Therefore V;; can be decomposed as a disjoint union of
open sets (p(U;)),c;, with L C I and i € L, which by connectedness of V; implies that
p(Ui) = Vj.

Now we can obtain a trivialization of V; by picking I’ C I such that (¢(U;)) As

el

qlu, : Us — Vj is bijective and thus a homeomorphism, f|y; must be a homeomorphism
because f|v; o qlu, = plu;-
This finishes the proof. O

Remark. In the situation of Proposition it suffices for Aut(p) to act transitively
on a single fibre. Because paut(p) : Y — Aut(p) \ Y is Galois, by Lemma the map



P is a cover. Then the fibre of the induced map P is a one point set everywhere (as p
is a connected cover, it suffices to know the fibre at a single point). This again shows
that p is bijective.

Definition 3.3. For a cover p: Y — X let Subcov(p) be the category whose

o objects are pairs (g, f) with ¢: Z — X a connected cover and f: Y — Z a
continuous map with go f =p

o morphisms between objects (g1, f1), (g2, f2) are continuous maps g : 73 — Z
such that go 0 g = ¢ and go f1 = fs.

Remark. In Definition from g o f = p and Lemma [3.] we have that f is a cover.
Similarly, a morphism ¢ : Z; — Z that is a morphism from (¢, f1) to (g2, f2) is also
cover. Thus all morphisms occuring in Definition [3.3] are covers.

The next theorem is the main part of the talk.

Proposition 3.4 ([Sza09, Essentially Theorem 2.2.10]). Let p: ¥ — X be a Galois
cover with X locally connected. Then

o for each subgroup H C Aut(p) = G, the map py: H\Y — X is a connected
cover.

e if ¢: Z — X is a connected cover such that

p

Y X

f

Z

commutes for a continuous map f: Y — Z, then f is a Galois cover and ¢ = Dy
in Subcov(p) for H = Aut(f) C Aut(p) = G. The cover ¢ is Galois if and only if

H is a normal subgroup of G and in this case we have Aut(q) = G/ H-
Furthermore, the above gives mutually inverse equivalences of categories

{Subgroups of G} +—  Subcov(p)
Aut(f) «— (g, f)

where we view {Subgroups of G} as a category via the partial ordering induced by
inclusions of subgroups of G.

Proof. We have the following commutative diagram illustrating the most important
maps:



Aut(p) \ 'Y

We first show that for H C G the map py : H\Y — X is a cover. We know that
py is a cover due to [Sza09, Lemma 2.1.7] as H acts evenly on Y. Because H acts
transitively on the fibres of py by construction, py is Galois (see Example. Thus
because Dy o pr = p we have that Dy is a cover from Lemma

Next we proof that a continuous map f with g o f = p is a Galois cover. From
Lemma it follows that f is a cover. By Proposition it thus suffices to check
transitivity of the action of H = Aut(f) on fibre of f. Let 2 € Z and y1,y2 € f~1(2).
We have 41,92 € p~1(q(2)) and because p is Galois there is an g € G with g(y;) = ya.
We have to show that g € H. As (fog)(y1) = f(y1) and go fog = go f, Proposition|1.2]
shows that fog = f and thus g € H.

Next we show that (¢, f) = (py,pn) for H = Aut(f) induced by a map f:Y — Z
with g o f = p (which we know to be a Galois cover). From the universal property
of quotients we obtain a map f : H\Y — Z which is a homeomorphism as f is
Galois. Because p = go fopy and p = Py o pg we obtain from surjectivity of pg that
qo f :T)H7 proving (q7f) = (ﬁH’pH)

We now proof that for (g, f), g is Galois if and only if Aut(f) = H C G is normal.
First, let ¢ be Galois. Our goal is the construct a group homomorphism A : Aut(p) —
Aut(g) mit ker A = H, which shows H is normal. Let ¢ € Aut(p) and y € Y, then
fW), f(6(y)) € ¢~ 2(f(y)). By transitivity of ¢ on its fibres there exists a ¢ € Aut(q)
with ¢(f(y)) = f(¢(y)). Therefore by Proposition for each ¢ € Aut(p) there is a
unique ¢ € Aut(g) with ¢ o f = fog¢. This construction gives us a map A : Aut(p) —
Aut(q). We now show that this is a group homomorphism. We have A(¢1-¢2)(f(y)) =
o1 02(f(y) = f((d1-02)(y) = ¢1(f($2)(y) = ¢1(d2(f(y))) = A(¢1) - A(¢2) and
thus A(¢1 - ¢2) = A(¢1) - A¢2).

It remains to show that ker A = H. For ¢ € ker A, we know f = f o ¢ and thus
f € Aut(f). Conversly for 7 € H by uniqueness we have A(7) = idy. Therefore if ¢ is
Galois then H is normal and Aut(q) & Aut(p)/Aut( )

Next we show that if Aut(f) = H C G is normal, then ¢ is Galois.

The action G ~ Y induces an action G/ 7~ H\'Y. That this action is even can
be seen by projecting an open U C Y with g-UNU = for all g € G\ {e} onto H\Y



via pgy. We have a group isomorphism

Aut(py) — Aut(q)

g fogof

because f is a homeomorphism fulfilling fopg = f and gof = py. As G/H\ (H\Y) =™
X via the projection induced by Dy, we know that the canonical map Aut(q)\ Z — X
is bijective and thus also a homeomorphism as it is open. Therefore g is Galois.

We now show functioriality of

F : {Subgroups of G} — Subcov(p)

By construction it is clear that F(idg) = id(z,, p,)- Thus it suffices to proof compat-
ibility with inclusions. For H C K C L subgroups in G, we have that F(H C K)o
FIKCL)=(H\Y—>K\Y)o(K\Y—>L\Y)=(H\Y—>L\Y)=F(HCL)
as the maps are projections. This proves functioriality of F'.

Next we show the functioriality of

G : Subcov(p) — {Subgroups of G}
(¢, f) = Aut(f) .

Here we also have G(id(q,5)) = idaus(s) by construction. We first show that a map
g:(q1,f1) — (g2, f2) induces an inclusion Aut(f1) C Aut(fs).

Let ¢ € Aut(f1). Then f; o ¢ = f1 implies go f; 0 ¢ = g o f1, which by go f1 = fo
proves ¢ € Aut(f). Thus for maps g1 : (g1, f1) — (g2, f2) and g2 : (g2, f2) — (g3, f3)
we have Aut(f1) C Aut(f2) C Aut(f3) which proves functioriality of G.

Lastly we show that F' and G are mutually inverse equivalences of categories. From
what we have already proven, we know that G o F' = id(subgroups of G} -

Thus we only need to show G o F' ~ idgypeov(p)- For g : Z1 — Z3 a map from (q1, f1)
to (g2, f2) the square

_ f1
(pAut(fl)apAut(fl)) — (@1, f)

(Paut(f2)s PAut(fz) ——= (a2, f2)
2

where

o f1:Aut(f1)\Y — Z; and f, : Aut(fa) \ Y — Z, are homeomorphisms as f;
and fo are Galois



o the left vertical map Aut(f1) \' Y — Aut(fz) \ Y is the projection induced by
Aut(f1) C Aut(fa)

commutes. As the horizontal maps are isomorphisms in Subcov(p) we thus have proven
GoF =~ idSubcov(p)~ O

We now state the algebraic counterpart to our main result Proposition [3.4] as in
[Sza09, Theorem 1.3.11].

Theorem ([Sza09, Theorem 1.3.11] (Krull)). Let L be a subextension of the Galois
extension K|k. Then Gal(K|L) is a closed subgroup of Gal(K|k). Moreover, the maps

L+ H:=CGal(K|L) and Hw L:=K"

yield an inclusion-reversing bijection between subfields K D L D k and closed sub-
groups H C G. A subextension L|k is Galois over k if and only if Gal(K'|L) is normal in

Gal(Kk); in this case there is a natural isomorphism Gal(L|k) = Gal(K‘kVGal(K‘L).

Remark (Comparison of Proposition [3.4]to [Sza09, Theorem 1.3.11]). In the following
we will highlight the similarity between the aforementioned theorems. We use the same
notions as in the respective theorems.

Cover Theory Field Extensions
Galois cover p: Y — X Galois extension K|k
(g, f) € Subcov(p) Subextension K D L D k
(g, ) — Aut(f) L — Gal(K|L)
H— (Dy,rH) Hw— K"
q Galois iff Aut(f) C Aut(p) normal L|k Galois iff Gal(K|L) C Gal(K|k) normal
For ¢ Galois Aut(q) = Aut(p)/Aut(f) For L|k Galois Gal(L|k) = Gal(K|k)/Gal(K|L)

Outlook. This correspondence will be made precise in the later parts of the seminar.
The bridge will be provided by Riemann surfaces.
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