
Seminar:
Galoisgroups and Fundamentalgroups

Talk 9 - Riemann surfaces

Preface
The following talk is devided into two parts. The first part defines the basic
terminology and some examples. The second part deals with holomorphic maps
between Riemann surfaces from a topological viewpoint.

Part I.

Definition 3.1.1 (complex atlas)
Let X be a Hausdorff topological space. A complex atlas on X is an open co-
vering U = {Ui | i ∈ I} of X together with maps fi : Ui → C mapping Ui
homeomorphically onto an open subset of C such that for all i, j ∈ I the tran-
sition maps

fj ◦ f−1i : fi(Ui ∩ Uj)→ C
fi ◦ f−1j : fj(Ui ∩ Uj)→ C

are holomorphic.
The maps fi are called complex charts. Two complex atlases U = {Ui | i ∈ I}
and U ′ = {U ′i | i ∈ I ′} on X are equivalent if their Union is also a complex atlas
and the maps f ′j ◦ f

−1
i : fi(Ui ∩ U ′j) → C are holomorphic for all Ui ∈ U and

Uj ∈ U ′.

Abbildung 1: Topological building blocks of an complex manifold X

Definition 3.1.2 (Riemann surface)
A Riemann surface (or 1-dimensional complex manifold) is a Hausdorff space
together with an equivalence class of complex atlases. We call the equivalence
class of atlases occuring in the Definition 3.1.1 as the complex structure on the
Riemann surface.
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Example 3.1.3

1) Open subsets
Let U ⊂ C be a open subset. Open subset are endowed with a structure of a
Riemann surface by the trivial covering U = U and the inclusion i : U → C.

2) The complex projective line
In order to construct the complex projective line we first extend the complex
plane C with a point at infinity, so we get: P1(C) := C ∪ {∞}. The topology
on P1(C) is called the one-point compactification or Alexandroff compactifica-
tion, which we know from complex analysis. The Alexandroff compactification
is defined as: A subset U ⊂ P1(C) is open ⇔ U ⊂ C is open or ∞ ∈ U and
P1 \ U ⊂ C is compact . By defining the stereographic projection (its a basic
fact from analysis on manifolds that the stereographic projection is indeed an
homeomorphism):

P : C ∪ {∞} → S2

z 7→ σ(z) :=
(

2z
|z|2+1 ,

|z|2−1
|z|2+1

)
∈ C× R

and identifying z ∈ C ∪ {∞} with σ(z) ∈ S2 we get that P1(C) ∼= S2

Abbildung 2: Complex projective line

Now we define two charts as follows:

f0 : P1 \ {∞} = C→ C

z 7→ z

f∞ : P1 \ {0} → C

z 7→ 1
z if z ∈ C

z 7→ 0 if z =∞

The transition map is given as:

f0∞ : f0(P1 \ {0,∞}) = C \ {0} → f∞(P1 \ {0,∞}) = C \ {0}

z 7→ 1
z
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Since z 7→ 1
z is holomorphic on C \ {0} we get an complex atlas {f0, f∞}

Complex tori

To construct the complex tori we first need to clear the term lattice in mathe-
matical terms. A lattice Γ is a discrete subgroup of (C,+) which is isomorphic
to Z2 and spans C as an R−vectorspace, explicitly in our case we set:

Z2 → Γ ⊂ C
(1, 0) 7→ w1

(0, 1) 7→ w2

w1, w2 are our basis of C over R with Γ := {n ·w1 +m ·w2 | n,m ∈ Z} ⊂ C. We
construct on the quotientgroup T := C/Γ the complex structure as follows: Let
π : C→ C/Γ be the projectionmap. We now view T as an topological space with
the quotient topology, which means a subset U ⊂ T is open ⇔ π−1(U) ⊂ C is
open. Since C is connected, T is also connected. Also T is compact, it is covered
by the image under the projection π of the compact parallelogramm which we
denote by: P := {λ · w1 + ν · w2 | λ, ν ∈ [0, 1]}. Defining the homeomorphism:

f : T → S1 × S1 ⊂ C2

(λ · w1 + ν · w2) + Γ 7→
(
e2πiλ, e2πiν

)
It follows that T ∼= S1 × S1. We can now construct the charts on T by setting

Abbildung 3: Sketch of Γ

Qz := z + P ⊂ C and the homeomorphism π|Qz
: Qz → π(Qz) ⊂ T with his

inverse function φz : π(Qz)→ Qz. We know claim that {φz | z ∈ C} is acctually
an complex atlas on T . The only thing remaining to prove is that the transiton
maps are holomorphic. It follows for the transition map ψzw that for all p ∈ Qz
π(ψzw) = π(p) ⇒ p − ψzw(p) ∈ Γ. And since Γ is discret we get that p − ψzw
is local constant ⇒ ψzw is holomorphic. Analogously we get that ψ−1zw that is
holomorphic.

Smooth affine plane curves
Let X be a closed subset of C2 defined as the locus of zeros of a polynomi-
al f ∈ C[x, y]; i.e. X := {(x, y) ∈ C2 | f(x, y) = 0}. Assume there is no
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Abbildung 4: Qz and Qw

point of X where the partial derivatives ∂f
∂x and ∂f

∂y both vanish. We can then
endow X with the structure of a Riemann surface as follows. In the neighbour-
hood of a point where ∂f

∂y is nonzero we define a complex chart by mapping a

point to its x−coordinate; similary, for points where ∂f
∂x is nonzero we take the

y−coordinate. By the inverse function theorem for holomorphic functions, in a
small enough neighbourhood the above mappings are indeed homeomorphisms.
Also the holomorphic version of the implicit function theorem implies that in in
the points where x and y define a complex chart, the transition function from x
to y is holomorphic, i.e. when ∂f

∂y does not vanish at some point, we may express

y as a holomorphic function of x and where ∂f
∂x does not vanish at some point,

we may express x as a holomorphic function of y. So we have defined a complex
atlas.
Definition 3.1.4 (holomorphic map)
Let X and Y be Riemann surfaces. A holomorphic map ψ : Y → X is a con-
tinuous map such that for each pair of open subsets U ⊂ X, V ⊂ Y satis-
fying ψ(V ) ⊂ U and complex charts f : U → C, g : V → C the functions
f ◦ ψ ◦ g−1 : g(V )→ C are holomorphic.

Part II.

In this part we always assume that the maps under consideration are non-
constant on all connected components, i.e. they do not map a whole component
to a single point.
Proposition 3.2.1 (Local structure of holomorphic maps)

Let ψ : Y → X be a holomorphic map of Riemann surfaces, and y a point of Y
with image x = ψ(y) in X. There exist open neighbourhoods Vy of y satisfying
ψ(Vy) ⊂ Ux, as well as complex charts gy : Vy → C and fx : Ux → C satisfying
fx(x) = gy(y) = 0 such that the following diagramm commutes with an appro-
pritate positive integer ey that does not depend on the choice of the complex
charts.

Vy
gy //

gy

��

Ux

fx

��
C z 7→zey // C
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Proof
Let ψ : Y → X be a holomorphic map of Riemann surfaces with ψ(y) = x ∈ X
for a point y ∈ Y . Definition 3.1.4 and may shrinking Ux and Uy gets us charts
gy : Vy → C and fx : Ux → C with x = ψ(y) ∈ Ux and y ∈ Vy with fx(x) =
gy(y) = 0. fx◦ψ◦g−1y is per Definition a holomorphic function, which vanishes at

0
(
(fx ◦ ψ ◦ g−1y )(0) = (fx ◦ ψ)(y) = fx(x) = 0

)
. As such it must be of the form

z 7→ zey ·H(z), where H(z) is a holomorphic function with H(0) 6= 0 and ey ∈ N.
Denote by log a fixed branch of the logarithm in a neighbourhood of H(0). From
complex analysis then we know (and by may again shrinking Vy) that the for-
mula h := exp(( 1

ey
) log(H)) defines a holomorphic function h on gy(Vy) with:

hey =
(

exp(( 1
ey

) · log(H))
)ey

= exp
(

log(H)
ey
· ey

)
= exp (log(H)) = H. Thus by

replacing gy by its composition with the map χ(z) = z · h(z). We obtain the
chart

(
fx ◦ ψ ◦ (χ ◦ gx)−1

)
(z) = zey that satisfies the required properties.

The independence of ey of the charts follows from the fact that changing a chart
amounts to composing with an invertible holomorphic function.
Defintion 3.2.2 (ramification index)
The integer ey of the Proposition 2.1.1 is called the ramification index or bran-
ching order of ψ at y. The points y with ey > 1 are called branch points. In the
follwoing we denote the set of branch points of ψ by Sψ.
Corollary 3.2.3
A holomorphic map f : X → Y between Riemann surfaces is open (i.e. it maps
open sets onto open sets)
Proof
Proposition 3.2.1 says that f looks like z 7→ zk for an k ∈ N (at least lokaly).
Since z 7→ zk is holomorphic and as we assumed at the beginning of Part II.
z 7→ zk is non-constant, with the open mapping thereom we then get that f is
indeed open.
Corollary 3.2.4
The fibres of ψ and the set Sψ are discret subsets of Y
Proof
Otherwise there would exist b ∈ Y such that the set S := {a ∈ X | ψ(a) = b}
has an accumualtion point. But then with the identity theorem we would get
ψ ≡ b, which means ψ is constant, so therefore we have an contradiction.
Definition 3.2.5 (proper map)
Let X and Y be topological spaces. A continious map f : X → Y is called
proper, if for every compact set K ⊂ Y the preimage f−1(K) ⊂ X is compact.
Proposition 3.2.6
Let X be a connected Riemann surface and ψ : Y → X a proper holomor-
phic map. The map ψ is surjective with finite fibres and its restriction to
Y \ ψ−1(ψ(Sψ)) is a finite topological cover of X \ ψ(Sψ)
Proof
1) Finite fibres
Let x ∈ X be a orbitrary point and consider the fibre Fx := ψ−1(x) and the
compact set K ⊂ Y . Since ψ is proper the set ψ−1(K) with Fx ⊂ ψ−1(K) is
compact. Corollary 3.2.4 then says Fx ⊂ ψ−1(K) is a discrete subset of a co-
mapct set and therefore finite.
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2) Surjective
The aim is to proof that ψ(Y ) is open an closed in X. Obviously Y is open in Y
then by Corollary 3.2.3 ψ(Y ) is open in X. It remains to show that ψ(Y ) ⊂ X
is closed, which is equivalent to prove X \ ψ(Y ) is open. Let y ∈ X \ ψ(Y )
be orbitary, then y has an open neighbourhood V with compact closure V . As
we know ψ is proper, so ψ−1(V ) is compact. Let E := Y ∩ ψ−1(V ), then E is
clearly compact and since ψ is continuous ψ(E) is compact and therefore also
closed. Let U = V \ ψ(E). Then U is an open neighbourhood of y and it is
disjoint from ψ(Y ). U is disjoint from ψ(Y ) cause if we suppose it is not then,
there would exist a point z ∈ U ∩ ψ(Y ) and a c ∈ Y such that ψ(c) = z. This
means c ∈ ψ−1(U) ⊂ ψ−1(V ) ⊂ ψ−1(V ). So c ∈ Y ∩ ψ−1(V ) = E. Therefore
z = ψ(c) ∈ ψ(E) which is a contradiction to z ∈ U . Thus X \ ψ(Y ) is open. All
in all ψ(Y ) is closed and open. Since the only subsets of a connected topologi-
cal space which are both closed and open are the empty set ∅ and the whole
space. As X is connected it follows ψ(Y ) = X. It remains to show that ψ is a
covering map away from the branch points. Let for y ∈ Y be ψ(y) = x. If x is
not the image of a branch point, then each element of its fiber maps homeomor-
phically onto a neighbourhood of x since the bottom arrow of the commutative
diagramm of Proposition 3.2.1 will be the identity map. As we now know the
fibres are finite, its clear that ψ will be a covering map.
Lemma 3.2.8
Let X be a Riemann surface and p : Y → X a connected cover of X as a to-
pological space. The space Y can be endowed with a unique complex structure
for which p becomes a holomorphic mapping.
Proof
Existence:
Since p : Y → X is a connected cover of X each point y ∈ Y has a neigh-
bourhood Vi such that p|Vi

: Vi → U ⊂ X is an hoemorphism with p(y) ∈ U .
If we take a complex chart f : U ′ → C with U ′ ⊂ U , then the composition
(f ◦ p)i defines a complex chart in a neighbourhood of y. This way we obtain
a complex atlas of Y by defining V := {Vi | i ∈ I} with the complex charts
(f ◦ p)i : Vi → C.
Uniqueness:
Assume there is another complex atlas V ′ such that p : (Y,V ′)→ X is holomo-
prhic. Then the identity on (Y,V) id : (Y,V) → (Y,V ′) is biholomorphic since
locally id(t) = (pr|V )−1 ◦ pr(t) for a suitable open set V .
Proposition 3.2.9
Assume given a connected Riemann surface X, a discrete closed set S of points
of X and a finite connected cover ψ′ : Y ′ → X ′, where X ′ := X \S. There exists
a Riemann surface Y containing Y ′ as an open subset and a proper holomorphic
map ψ : Y → X such that ψ |Y ′= ψ′ and Y ′ = Y \ ψ−1(S).
Proof
Fix a point x ∈ S and also define the unitdisc D := {z ∈ C | |z| < 1} ⊂ C.
Since S is discret we find a connected open neighbourhood x ∈ Ux of X such
that Ux ∩ S = ∅ and a complex chart f : Ux → D with f(x) = 0
Then the restriction ψ′|ψ′−1(Ux\{x}) is a finite cover. Hence ψ−1(Ux \ {x}) := V ix
decomposes as a finite disjoint union of connected components and each V ix is
a cover of Ux \ {x}. Via the isomorphism f|Ux\{x}Ux \ {x} → Ḋ := D \ {0} each

V ix becomes by Example 2.4.12. (Talk 7) isomorphic to a cover Ḋ → Ḋ given
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by z 7→ zk for some k > 1. Now we choose points yix for all i and x. We define
Y as the disjoint union Y := Y ′ ∪ {yix} and an extension ψ of ψ′ to Y by:

ψ : Y := Y ′ ∪ {yix} → X

y 7→ x if y ∈ {yix}

y 7→ ψ′(y) if y ∈ Y ′

For each i and x we extend the holomorphic isomorphism pix : V ix → Ḋ to the
bijection:

pix : V ix ∪ {yix} → D

y 7→ piy(y) if y ∈ V ix
y 7→ 0 if y ∈ {yix}

Abbildung 5: Illustration of the proof of Proposition 3.2.9

Together with the canonical complex structure on Y ′ defined in the proof of
Lemma 3.2.8 {pix} form a complex atlas on Y . Also by Lemma 3.2.8 the map
ψ is holomorphic. Finally the map ψ is proper, because by Example 3.2.5 (2)
ψ′ is proper and the fibres of ψ are finite, and the compact subsets of X ′ differ
from those of X by finitely many points.

Theorem 3.2.7
In the situation of Proposition 3.2.6 mapping a Riemann surface ψ : Y → X
over X to the topological cover Y \ ψ−1(S) → X \ S obtained by restriction
of ψ induces an equivalence of the category HolX,S with the category of finite
topological covers of X \ S.
Proof
In view of Proposition 3.2.9 it remains to prove that the functor of the theorem
is fully faithful. This means the following: Let Y and Z be two Riemann surfaces
equipped with proper holomorphic maps ψY : Y → X and ψZ : Z → X with
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all branch points above S and a morphism of covers p′ : Y ′ → Z ′ over X ′

with Y ′ = Y \ ψ−1Y (S) and Z ′ = Z \ ψ−1Z (S), there is a unique holomorphic
map p : Y → Z over X extending p′. As we know from Lemma 2.2.11 (Talk
5) the map p′ : Y ′ → Z ′ is a cover, so it is holomorphic with respect to the
unique complex structure on Y ′ by Lemma 3.2.8. Because of ψY |Y ′= ψZ ◦ p′
the complex structure of Y ′ must be compatible with the complex structure of
Y . We now proceed similary as in the Proof of Proposition 3.2.9. Let x ∈ S
and f : Ux → D be a chart with x ∈ Ux and f(x) = 0. Denote U∗ := Ux \ {x}
and we assume that Ux is so small that ψY and ψZ are unbranched over U∗.
Then we define the connected components of ψ−1Y (Ux) by V1, ..., Vn and the
connected components of ψ−1Z (Ux) by W1, ...,Wm. Then V ∗j := Vj \ ψ−1Y (x)

are the connected components of ψ−1Y (U∗) and W ∗i := Wi \ ψ−1Z (x) are the
connected compoents of ψ−1Z (U∗) with j ∈ {1, ..., n} and i ∈ {1, ...,m}. Since
p′ | ψ−1Y (U∗) : ψ−1Y (U∗) → ψ−1Z (U∗) is biholomorphic, we get that n = m and
by may renumbering we can set p′(V ∗j ) = W ∗j . Since ψY | V ∗j : V ∗j → U∗ is

a finite connected unbranched covering we get Vj ∩ ψ−1Y (x) (the same holds
for Wi ∩ ψ−1Z (x)) consists by Proposition 3.2.9 of exactly one point yj (or zi).
Hence p′ | ψ−1Y (U∗) : ψ−1Y (U∗)→ ψ−1Z (U∗) can be continued to a bijective map
ψ−1Y (U)→ ψ−1Z (U) which assigns to the point yj the point zi. Since ψY : Vj → U
and ψZ : Wi → U are proper, the continuation is a homeomorphism and by
appyling the Riemann’s theorem on removable singularities (We can apply the
Theorem cause as in the proof of Prop.3.2.9 mentioned Vj and Wi are isomorphic
to D := {z ∈ C | |z| < 1}) it is even biholomorphic. If we now apply this
procedure for every single point on s ∈ S we get the desired map p : Y → Z.

Abbildung 6: Constructing p : Y → Z
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