
The monodromie action

Contents

Definition 1 (fundamental group). The fundamental group for a topological

space X and x ∈ X is π1(X,x) = {loops in X based at x}/homotopy with the

multiplication being the composition

and cx : [0, 1] → Xt 7→ x the neutral element

Definition 2 (simply connected). A topological space is simply connected if it

is path connected and if π1(X,x) ∼= 1 for all x ∈ X

Construction 3 (monodromie action). X topological space x ∈ X p : Y 7→ X

a cover.

We define

π1(X,x)× π1(X,x) → p−1(x)

([α], y) 7→ [α]y := α̂(1)

with α̂a lift of αalong p with α̂(0) = y

That α̂is a lift means that p◦α̂ = α or that the following diagram is commutative:

Y

[0, 1] X

p
α̂

α

It is not clear that this construction is well defined. But we will

prove that in the next Lemma.

Example 4. We are looking at the canonical map π : C → C/(Z⊕ iZ) this is a
cover so we can look at the monodromie action. We chose some x in C/(Z⊕ iZ)
and a loop α. We can see that we only get a lift α̂ that is not a loop if α is not

contractible. This will follow as easy Corollary of the next Lemma.
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Lemma 5 (Lemma 2.3.2 in the book). Let p : Y → X be a cover x ∈ X and

y ∈ p−1(x)

1. Given a path α : [0, 1] → X with α(0) = x there is a unique path α̂ : [0, 1] →
Y with α̂(0) = y and p ◦ α̂ = α

2. Assume moreover that we are given a second path β : [0, 1] → X homotopic

to α. Then the unique lift β̂ : [0, 1] → X with β̂(0) = y and p ◦ β̂ = pb has

the same endpoint as α̂.

Proof. We want to construct a path α̂ as in the following diagram

Y

[0, 1] X

p
α̂

α

For statement 1) uniqueness follows from Proposition 2.2.2

existence: It is easy to see that such a lift exists if p is a trivial cover

∐
X

[0, 1] X

p
α̂

α

Because every cover is locally isomorphic to a trivial cover we can use this fact

to prove the theorem for all covers.

For every x ∈ α([0, 1]) we choose a set Vx so that p|p−1(Vx) : p
−1(Vx) → Vx is

isomorphic to a trivial cover.

The sets α−1(Vx) form a covering of the interval [0, 1]

Because the interval [0, 1] is compact we get a finite subcovering.

Hence we can choose a subdivision 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 of [0, 1]
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such that each closed interval [ti, ti+1] is contained in some α−1(Vx). Thus

the cover is trivial over each α([ti, ti+1]). We can now construct α̃ inductively.

For statement 2) We will show that we can lift homotopies that means for a

homotopy h : [0, 1] × [0, 1] → X with h(0, t) = α(t) and h(1, t) = β(t) there

is a homotopy (̂h) : [0, 1] × [0, 1] → Y with p ◦ (̂h) = h, ĥ(0, t) = α̂(t) and

ĥ(1, t) = β̂(t). The construction of (̂h) is similar to that of α̂ in the way that we

again divide the square [0, 1] × [0, 1] in smaller parts that we then lift individ-

ually. Similar to above we choose subdivisions 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1

and 0 = s0 ≤ s1 ≤ · · · ≤ sm = 1 of [0, 1] so we can lift h restricted to

[ti, ti+1] × [sj , sj+1]0. That this functions is assured by the Lebesgue lemma.

Then we lift these smaller squares one after the other going serpentwise from

the border h(0, 1), where we know that ĥ should fulfil ĥ(0, 0) = α(0) = y, to the

top of the big square.

The lifts of the small squares fit together at the borders because they coincide

at one corner and such the lifing on then intersection is unique. So we get a ĥ

as in the following picture.
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1. We know now that α̂ is the left border of ĥ because as we showed in

the first statement lifts with a fixed point in Y are unique and α̂ is one

possibility for a lift.

2. analogue we get that the bottom border should be the constant path

3. with that we get that the right border is β̂

4. finally we get that the top border is constant

Therefore it follows that β̂(1) = α̂(1).

Definition 6. X a topological space x ∈ X

We define a functor.

Fibx : {Covers of X} → {left π1(X,x) sets}

(p : Y → X) 7→ p−1(x)

Which maps funtions between covers of X like this:

p : Z → X, q : Z → X covers over X
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f : Z → Y a map of covers over X then Fibx(f) is the map f|p−1(x)p
−1(x) →

q−1(x)

This map is well defined between sets because f is a map over X and a map of

left π1(X,x) sets because for [α] ∈ π1(X,x) and y ∈ p−1(x) f([α]y) = [f ◦α]f(y)

Definition 7. A topological space X is locally simply connected if every point

has a basis of simply connected open neighborhoods.

Theorem 8 (2.3.4 in the book). Let X be a connected and locally simply con-

nected topological space and x ∈ X a base point.

The functor Fibx induces an equivalence of the category of covers of X with the

category of left π1(X,x) sets. Connected covers correspond to π1(X,x) sets with

transitive action and Galois covers to coset spaces of normal subgroups.

The next two theorems we will only state because they are proven in the

next chapter of the book and thus covered in the next talk.

Theorem 9 (2.3.5 in the book). For a connected and locally simply connected

topological space X and a base point x ∈ X the functor Fibx is representable by

a cover X̃x → X. That means Fibx ∼= HomX(X̃x,−)

Remark. Aut(X̃x | X) gives a right action on Fibx(Y ) ∼= HomX(X̃x, Y ) for

Y a cover of X.

HomX(X̃x, Y )×Aut(X̃x, X) → HomX(X̃x, Y ) (1)

(f, ϕ) 7→ f ◦ ϕ (2)

Then we get a left action by going to Aut(X̃x | X)op where the multiplication is

swapped.

Theorem 10 (2.3.7 in the book). The cover X̃xis a connected Galois cover of

X, with automorphism group isomorphic to π1(X,x). Moreover for each cover

Y → X the left action of Aut(X̃x | X)op on Fibx(X) given by the previous

remark is exactly the monodromy action of π1(X,x).

Proof of Theorem 8. First we want to show that the following functor is an

equivalence of categories.

Fibx : {Covers of X} → {left π1(X,x) sets}

(p : Y → X) 7→ p−1(x)

For that we will prove that Fibx is fully faithful and essentially surjective.

fully faithfulness :
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Let p : Y → X and q : Z → X be two covers of X. We will show that every map

ϕ : Fibx(Y ) → Fibx(Z) comes from a unique map Y → Z over X. We assume

Y,Z are connected. Otherwise we will show that for every connected component

of Z and Y and then fit the map together. We have an isomorphism

Fibx(Y ) ∼= HomX(X̃x, Y )

y 7→ πy

by theorem 9 Now we choose an element y0 ∈ Fibx(Y ) By theorem 2.2.10 in

the book we get an isomorphism π̃y0
: Uy0

\X̃x → Y with Uy0
= Aut(X̃x | Y )

because X̃x → X is Galois by 10

With the isomorphism:

Fibx(Z) ∼= HomX(X̃x, Z)

z 7→ πz

we get a commutative diagram:

Fibx(y) HomX(X̃x, Y )

Fibx(Z) HomX(X̃x, Z)

ϕ and a element πz0 ∈ HomX(X̃x) induced by

the above defined element y0 ∈ Fibx(Y ). The map πz0 : X̃x → Z induces

with the universal property of the quotient a map π̃z0 : Uy0
\X̃x → Z because

Uy0
injects into the stabilizer of ϕ(y0) via ϕ. By composition we get a map

π̃z0 ◦ π̃−1
y0

: Y → Uy0
\X̃x → Z as we wanted. Such a map is unique because if we

had two maps f, g : Y → Z between connected covers that coincide restricted

to the fibre of x they are the same by Proposition 2.2.2 of the book.
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essential surjective For every π1(X,x)left set S we have to find a cover that

exhibits S as fibre of x. For S transitive we may take the quotient π1(X,x)S\X̃x

that makes sense because by Theorem 10 π1(X,x)S supAutX(X̃x) then we de-

fine the cover q : π1(X,x)S\X̃x → X. Furthermore q−1(x) = S. That is the

case because for p : X̃x → X the universal cover p−1(x) ∼= Aut(X̃x) Hence

q−1 ∼= Aut(X̃x)/π1(X,x)S ∼= π1(X,x)/π1(X,x)S ∼= π1(X,x)·S = S because S

is transitive.

Corollary 11. Let X be a connected and locally simply connected topological

space and x ∈ X. Then the functor Fibx induces an equivalence of the category

of finite covers of X with the category of finite continous left ˆπ1(X,x)-sets.

Connected covers correspond to finite left ˆπ1(X,x)-sets with transitive action

and Galois covers to coset spaces of open normal subgroups. Here ˆπ1(X,x)

denotes the profinite completion of π1(X,x)as in Example 1.3.4(2) in the book
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