Group theory for physicists

Problem set 6 (for the exercises in the week of Nov. 24)

Problem 1 Number of irreps = number of classes

Let G be a group of order n. Furthermore, let m be the number of classes and p be the number of non-equivalent irreps of G. In Sec. 2.4.4 of the lecture we have only shown $p \leq m$. Here we prove the equal sign.

a) The orthogonality relations for the matrix elements of the irreps are (see Sec. 2.4.3)

$$\frac{\lambda_i}{n} \sum_{q} \Gamma^i(g)^*_{\mu\nu} \Gamma^k(g)_{\mu'\nu'} = \delta_{ik} \delta_{\mu\mu'} \delta_{\nu\nu'} \qquad (*)$$

with $\lambda_i = \dim(\Gamma^i)$. As in the lecture we now collect (for fixed i, μ, ν) the n numbers $\Gamma^i(g_1)_{\mu\nu}$ to $\Gamma^i(g_n)_{\mu\nu}$ in a vector with n components. For every irrep Γ^i there are λ_i^2 such vectors. According to (*) all these vectors are orthogonal to one another. In Sec. 2.5 we have shown

$$\sum_{i=1}^{p} \lambda_i^2 = n.$$

This means that there are n such orthogonal vectors, i.e., n triples (i, μ, ν) which we label by the index $a = 1, \ldots, n$. Furthermore, we define n normalized vectors x^a with components

$$x_j^a = \sqrt{\frac{\lambda_i}{n}} \Gamma^i(g_j)_{\mu\nu} \qquad (a, j = 1, \dots, n).$$

With these definitions, (*) simply means

$$\langle x^a | x^b \rangle = \delta_{ab} \,,$$

where b corresponds to the triple (k, μ', ν') . Using these preliminary results, show that the matrix elements of the irreps satisfy the completeness relation

$$\sum_{i=1}^{p} \sum_{\mu,\nu=1}^{\lambda_i} \frac{\lambda_i}{n} \Gamma^i(g_j)_{\mu\nu} \Gamma^i(g_{j'})_{\mu\nu}^* = \delta_{jj'}.$$

Hint: You can show this in one or two lines.

b) For an irrep $\Gamma^i(G)$, show that the sum of the $\Gamma^i(g)$ over the elements of a class c is

$$\sum_{g \in c} \Gamma^i(g) = \frac{n_c}{\lambda_i} \chi_c^i \mathbb{1}_{\lambda_i}.$$

Here, n_c is the number of group elements in class c, χ_c^i is the character of class c in irrep Γ^i , and $\mathbb{1}_{\lambda_i}$ is the unit matrix of dimension λ_i .

Hint: Show that the LHS commutes with $\Gamma^i(g)$ for all $g \in G$, use Schur's Lemma 1, and compute the trace of both sides of the equation.

c) From Sec. 2.4.4 we know the orthogonality relations for characters,

$$\sum_{c=1}^{m} \frac{n_c}{n} (\chi_c^i)^* \chi_c^k = \delta_{ik} .$$

Show that the characters also satisfy the completeness relation

$$\frac{n_c}{n} \sum_{i=1}^{p} \chi_c^i (\chi_{c'}^i)^* = \delta_{cc'}.$$

Hint: In the result of a), sum over g and g' in classes c and c' and use b).

d) Let M be an $m \times p$ matrix with

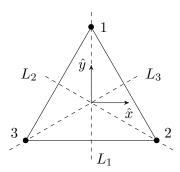
$$M^{\dagger}M = \mathbb{1}_p$$
 and $MM^{\dagger} = \mathbb{1}_m$.

Show that this is only possible for m = p.

e) Use c) and d) to show that the number of non-equivalent irreps of G equals the number of classes.

Problem 2 A product representation of D_3

a) Construct the matrix representation of D_3 in the 2-dimensional space spanned by the unit vectors \hat{x} and \hat{y} (see figure). Is this representation irreducible?



- b) Let (x_1, y_1) and (x_2, y_2) be the coordinates of two vectors that transform under D_3 independently and as in part a). Consider the 4-dimensional space V spanned by the functions x_1x_2 , x_1y_2 , y_1x_2 , and y_1y_2 . Construct the representation of D_3 on V and show that it is the product of the representation of part a) with itself.
- c) Find the irreps of D_3 contained in the 4-dimensional product representation of part b).

Problem 3 Clebsch-Gordan coefficients

Prove the following orthonormality and completeness relations for the Clebsch-Gordan coefficients introduced in Sec. 2.6 of the lecture:

$$\begin{split} & \sum_{\alpha\lambda\ell} \langle i', j'(\mu, \nu)\alpha, \lambda, \ell \rangle \langle \alpha, \lambda, \ell(\mu, \nu)i, j \rangle = \delta_{i'i}\delta_{j'j} \,, \\ & \sum_{ij} \langle \alpha', \lambda', \ell'(\mu, \nu)i, j \rangle \langle i, j(\mu, \nu)\alpha, \lambda, \ell \rangle = \delta_{\alpha'\alpha}\delta_{\lambda'\lambda}\delta_{\ell'\ell} \,. \end{split}$$

Hint: Use the orthonormality and completeness of the basis systems $\{|i,j\rangle\}$ and $\{|\alpha,\lambda,\ell\rangle\}$.