Group theory for physicists Problem set 9 (for the exercises in the week of Dec. 16)

Problem 1 Reduction of the regular representation of C_3

Consider the Abelian group C_3 with elements e, a, a^{-1} (e is the identity).

- a) How many irreps does C_3 have, what are their dimensions, and how often do they occur in the regular representation?
- b) Show that

$$e_1 = \frac{1}{3}(e + a + a^{-1})$$

is a primitive idempotent and generates the trivial representation.

c) Now consider another idempotent

$$e_2 = xe + ya + za^{-1}$$

and use the conditions $e_1e_2 = 0$ and $e_2e_2 = e_2$ to derive equations for x, y, and z. Determine all solutions of these equations and find out whether the resulting idempotents are primitive.

- d) Find out whether the primitive idempotents generate equivalent or inequivalent representations.
- e) Construct all irreducible left ideals and the corresponding irreps of C_3 . Summarize the latter in a table.

Problem 2 Product representations of S_n

Prove the following theorem: If D^{λ} and D^{μ} are two irreps of S_n , then

- a) $D^{\lambda} \otimes D^{\mu}$ contains D^{s} with multiplicity one (zero) if D^{λ} and D^{μ} are equivalent (inequivalent).
- b) $D^{\lambda} \otimes D^{\mu}$ contains D^{a} with multiplicity one (zero) if D^{λ} and D^{μ} are associated (not associated).

Hint: For the multiplicity, use $a_k = \frac{1}{n!} \sum_p \chi^k(p)^* \chi(p)$. Also, use $\chi^{\lambda \otimes \mu} = \chi^\lambda \chi^\mu$ and the fact that for S_n the characters are real.

Problem 3 Symmetrizer and antisymmetrizer of S_n

Show that the symmetrizer $s = \sum_{p} p$ and the antisymmetrizer $a = \sum_{p} (-1)^{p} p$ of S_{n} are essentially idempotent and primitive.

Problem 4 Irreducible symmetrizers of S_3

The irreducible symmetrizers of the standard Young tableaux of S_3 are given by

$$e_1 = s$$
, $e_2 = e + (12) - (13) - (321)$,
 $e_3 = a$, $e_2^{(23)} = e - (12) + (13) - (123)$,

see Sec. 5.4 of the lecture. Show that these four elements of the group algebra \tilde{S}_3 are essentially idempotent and primitive.