Group theory for physicists Problem set 6 (for the exercises in the week of Nov. 25)

Problem 1 Number of irreps = number of classes

Let G be a group of order n. Furthermore, let m be the number of classes and p be the number of non-equivalent irreps of G. In Sec. 2.4.4 of the lecture we have only shown $p \leq m$. Here we prove the equal sign.

a) The orthogonality relations for the matrix elements of the irreps are (see Sec. 2.4.3)

$$
\frac{\lambda_i}{n} \sum_g \Gamma^i(g)_{\mu\nu}^* \Gamma^k(g)_{\mu'\nu'} = \delta_{ik} \delta_{\mu\mu'} \delta_{\nu\nu'} \qquad (*)
$$

with $\lambda_i = \dim(\Gamma^i)$. As in the lecture we now collect (for fixed i, μ, ν) the n numbers $\Gamma^i(g_1)_{\mu\nu}$ to $\Gamma^{i}(g_{n})_{\mu\nu}$ in a vector with n components. For every irrep Γ^{i} there are λ_{i}^{2} such vectors. According to (∗) all these vectors are orthogonal to one another. In Sec. 2.5 we have shown

$$
\sum_{i=1}^p \lambda_i^2 = n \, .
$$

This means that there are n such orthogonal vectors, i.e., n triples (i, μ, ν) which we label by the index $a = 1, \ldots, n$. Furthermore, we define n normalized vectors x^a with components

$$
x_j^a = \sqrt{\frac{\lambda_i}{n}} \ \Gamma^i(g_j)_{\mu\nu} \qquad (a, j = 1, \dots, n) \, .
$$

With these definitions, (∗) simply means

$$
\langle x^a | x^b \rangle = \delta_{ab} \,,
$$

where b corresponds to the triple (k, μ', ν') . Using these preliminary results, show that the matrix elements of the irreps satisfy the completeness relation

$$
\sum_{i=1}^{p} \sum_{\mu,\nu=1}^{\lambda_i} \frac{\lambda_i}{n} \Gamma^i(g_j)_{\mu\nu} \Gamma^i(g_{j'})_{\mu\nu}^* = \delta_{jj'}.
$$

Hint: You can show this in one or two lines.

b) For an irrep $\Gamma^i(G)$, show that the sum of the $\Gamma^i(g)$ over the elements of a class c is

$$
\sum_{g \in c} \Gamma^i(g) = \frac{n_c}{\lambda_i} \chi_c^i \mathbb{1}_{\lambda_i} \, .
$$

Here, n_c is the number of group elements in class c, χ_c^i is the character of class c in irrep Γ^i , and $\mathbb{1}_{\lambda_i}$ is the unit matrix of dimension λ_i .

Hint: Show that the LHS commutes with $\Gamma^{i}(g)$ for all $g \in G$, use Schur's Lemma 1, and compute the trace of both sides of the equation.

c) From Sec. 2.4.4 we know the orthogonality relations for characters,

$$
\sum_{c=1}^m \frac{n_c}{n} (\chi_c^i)^* \chi_c^k = \delta_{ik}.
$$

Show that the characters also satisfy the completeness relation

$$
\frac{n_c}{n} \sum_{i=1}^p \chi_c^i (\chi_{c'}^i)^* = \delta_{cc'}.
$$

Hint: In the result of [a\),](#page-0-0) sum over g and g' in classes c and c' and use [b\).](#page-0-1)

d) Let M be an $m \times p$ matrix with

$$
M^{\dagger}M = \mathbb{1}_p \quad \text{and} \quad MM^{\dagger} = \mathbb{1}_m \, .
$$

Show that this is only possible for $m = p$.

e) Use [c\)](#page-1-0) and [d\)](#page-1-1) to show that the number of non-equivalent irreps of G equals the number of classes.

Problem 2 A product representation of D³

a) Construct the matrix representation of D_3 in the 2-dimensional space spanned by the unit vectors \hat{x} and \hat{y} (see figure). Is this representation irreducible?

- b) Let (x_1, y_1) and (x_2, y_2) be the coordinates of two vectors that transform under D_3 independently and as in part a). Consider the 4-dimensional space V spanned by the functions $x_1x_2, x_1y_2, y_1x_2,$ and y_1y_2 . Construct the representation of D_3 on V and show that it is the product of the representation of part [a\)](#page-1-2) with itself.
- c) Find the irreps of D_3 contained in the 4-dimensional product representation of part [b\).](#page-1-3)

Problem 3 Clebsch-Gordan coefficients

Prove the following orthonormality and completeness relations for the Clebsch-Gordan coefficients introduced in Sec. 2.6 of the lecture:

$$
\sum_{\alpha\lambda\ell} \langle i',j'(\mu,\nu)\alpha,\lambda,\ell\rangle \langle \alpha,\lambda,\ell(\mu,\nu)i,j\rangle = \delta_{i'i}\delta_{j'j},
$$

$$
\sum_{ij} \langle \alpha',\lambda',\ell'(\mu,\nu)i,j\rangle \langle i,j(\mu,\nu)\alpha,\lambda,\ell\rangle = \delta_{\alpha'\alpha}\delta_{\lambda'\lambda}\delta_{\ell'\ell}
$$

.

Hint: Use the orthonormality and completeness of the basis systems $\{|i, j\rangle\}$ and $\{|{\alpha, \lambda, \ell}\rangle\}$.