Übungen zur Quantenmechanik für LA und Nanoscience Blatt 10 (für die Übungen in der Woche 08.01.-12.01.)

1 Parität der Kugelflächenfunktionen

Zeigen Sie, dass die Parität der $Y_{\ell m}(\theta, \varphi)$ durch $(-1)^{\ell}$ gegeben ist. Hinweis: Wie ändern sich θ und φ unter einer Paritätstransformation $\vec{r} \to -\vec{r}$?

2 Das Wasserstoffatom

In der Vorlesung haben wir gezeigt, dass jeder gebundene Zustand $|\psi\rangle$ eines Systems mit radial-symmetrischem Potential als Linearkombination

$$|\psi\rangle = \sum_{n\ell m} C_{n\ell m} |n\ell m\rangle$$

geschrieben werden kann, wobei die $|n\ell m\rangle$ die gleichzeitigen Eigenzustände der Operatoren H, L^2 und L_z sind. Die Quantenzahlen n, ℓ und m gehören zu H, L^2 und L_z (in dieser Reihenfolge). Diese werden auch in den weiteren Aufgaben dieses Übungsblattes verwendet.

Betrachten Sie ein Wasserstoffatom, dessen Quantenzustand durch die normierte Wellenfunktion

$$\psi(r,\theta,\varphi) = \frac{1}{\sqrt{8\pi}} R_{10}(r) + \frac{1}{2} R_{21}(r) \left[Y_{1,1}(\theta,\varphi) + Y_{1,-1}(\theta,\varphi) \right]$$

gegeben ist, wobei wir die übliche Faktorisierung der Eigenfunktionen $\psi_{n\ell m}(r,\theta,\varphi)$ (die den Eigenzuständen $|n\ell m\rangle$ entsprechen) in einen Radialanteil $R_{n\ell}(r)$ und einen Winkelanteil $Y_{\ell m}(\theta,\varphi)$ vorgenommen haben.

- a) Berechnen Sie alle möglichen Ergebnisse von Messungen der Energie sowie von L^2 und L_z und die zugehörigen Wahrscheinlichkeiten.
- b) Berechnen Sie die Erwartungswerte von L^2 und L_z in dem o.a. Zustand.

Hinweis: Schreiben Sie $\psi(r, \theta, \varphi)$ als Linearkombination von geeigneten $|n\ell m\rangle$. Es gilt $Y_{00}(\theta, \varphi) = 1/\sqrt{4\pi}$.

3 Isotroper harmonischer Oszillator

Jeder Zustand $|\psi\rangle$ eines isotropen harmonischen Oszillators in drei Dimensionen kann als Linearkombination von Zuständen $|n\ell m\rangle$ ähnlich zu den in Aufgabe 2 geschrieben werden. Benutzen sie die folgenden Fakten über einen bestimmten Quantenzustand $|\psi\rangle$, um die Eigenzustände $|n\ell m\rangle$ zu bestimmen, die in $|\psi\rangle$ auftreten, zusammen mit den zugehörigen Koeffizienten.

a) Wenn die Energie gemessen wird, ist die Wahrscheinlichkeit, ein Ergebnis $E > \frac{5}{2}\hbar\omega$ zu finden, gleich Null.

Hinweis: Betrachten Sie die Beziehungen zwischen den Quantenzahlen n und ℓ und zwischen den Quantenzahlen ℓ und m. Sie sollten vier mögliche Eigenzustände erhalten. Die Normierungsbedingung für $|\psi\rangle$ liefert eine Beziehung zwischen den Koeffizienten dieser Eigenzustände.

- b) Wenn die Parität gemessen wird, ist die Wahrscheinlichkeit für das Ergebnis +1 gleich $\frac{1}{3}$. Hinweis: Welche Quantenzahl hängt mit der Parität zusammen? Fakt b) liefert einen Koeffizienten sowie, zusammen mit den Ergebnis von a), eine Beziehung zwischen den verbleibenden Koeffizienten.
- c) Wenn die Quantenzahl m gemessen wird, sind die Wahrscheinlichkeiten $P(m=0)=\frac{1}{3}$ und $P(m=1)=\frac{2}{3}$.

Hinweis: Zusammen mit den Beziehungen zwischen den Koeffizienten aus a) bzw. b) liefert dieser Fakt alle verbleibenden Koeffizienten bis auf einen relativen Phasenfaktor.

d) Der Erwartungswert der x-Komponente des Ortsoperators \vec{X} ist Null. Hinweis: Die Berechnung von $\langle X \rangle$ vereinfacht sich unter Benutzung der Parität.

4 Quantisierung der Energie im isotropen harmonischen Oszillator

In der Vorlesung haben wir die Schrödinger-Gleichung im Ortsraum für den isotropen harmonischen Oszillator in drei Dimensionen angegeben und den Radialanteil R(r) der Wellenfunktion durch R(r) = U(r)/r parametrisiert. Danach haben wir $U(y) = v(y)e^{-y^2/2}$ mit einer dimensionslosen Variablen $y = (m\omega/\hbar)^{1/2}r$ substituiert. Mit der Definition $\varepsilon = 2E/\hbar\omega$, wobei E die Energie ist, erhielten wir eine Differentialgleichung für v(y),

$$v''(y) - 2yv'(y) + \left[\varepsilon - 1 - \frac{\ell(\ell+1)}{y^2}\right]v(y) = 0.$$

Wie üblich gehört die Quantenzahl ℓ zum Operator L^2 .

- a) Wie verhält sich die Funktion v(y) für $y \to 0$?
- b) Verwenden Sie den Ansatz $v(y) = y^{\ell+1}\mu(y)$, um die Differentialgleichung

$$\mu''(y) + 2\left(\frac{\ell+1}{y} - y\right)\mu'(y) + (\varepsilon - 2\ell - 3)\mu(y) = 0$$

für die Funktion $\mu(y)$ herzuleiten.

c) Substituieren Sie die Taylor-Entwicklung $\mu(y)=\sum\limits_{k=0}^{\infty}C_ky^k$ in die Differentialgleichung von Teil b) und leiten Sie die Rekursionsbeziehung

$$C_{k+2} = C_k \frac{2(k+\ell) - \varepsilon + 3}{(k+2)(k+2\ell+3)}$$

für die Koeffizienten C_k her. Zeigen Sie, dass alle ungeraden Koeffizienten verschwinden müssen.

Hinweis: Nachdem die Ableitungen durchgeführt wurden, beginnen die Summen nicht mehr bei k=0. Es empfiehlt sich, diese untere Grenze wiederherzustellen, indem Sie den Summationsindex entsprechenden ändern.

d) Betrachten Sie die Rekursionsbeziehung von Teil c) und berechnen Sie den Grenzwert des Verhältnisses C_{k+2}/C_k für große k. Benutzen Sie das Ergebnis, um zu zeigen, dass die entsprechenden Taylor-Reihe zu einer Funktion der Form $y^s e^{y^2}$ konvergiert, wobei uns der exakte Werte von s hier nicht interessiert.

Hinweis: Berechnen Sie die Taylor-Entwicklung von $y^s e^{y^2}$ and zeigen Sie, dass das Verhältnis \bar{C}_{n+2}/\bar{C}_n ihrer Koeffizienten für $n\to\infty$ denselben Grenzwert hat wie C_{k+2}/C_k .

e) Substituieren Sie nun das Ergebnis von Teil d) in den Radialanteil U(y) der Wellenfunktion. Dies ergibt eine Funktion, die nicht normiert werden kann. Untersuchen Sie das Verhalten dieser Funktion für $y \to \infty$.

Um die Nicht-Normierbarkeit zu verhindern, müssen wir fordern, dass die Folge der geraden Koeffizienten (die nicht alle Null sein können, wenn wir eine nichttriviale Lösung haben wollen) bei einem bestimmten k_c abbricht, d.h. $C_k = 0$ für $k > k_c$. Zeigen Sie, dass diese Forderung zur Quantisierung der Energie führt und berechnen Sie die möglichen Werte von E.

Hinweis: Setzen Sie $k_c = 2n_r$ und benutzen Sie die Definition von ε , um die Quantisierung zu erhalten. Setzen Sie anschließend $2n_r + \ell = n$, wobei n die Quantenzahl ist, die zum Hamilton-Operator des Systems gehört.

f) Berechnen Sie den Entartungsgrad der Energie-Eigenzustände für beliebige Werte der Quantenzahl n.

Hinweis: Erinnern Sie sich daran, wie die Quantenzahl ℓ mit n verknüpft ist und welche Werte von m für gegebenes ℓ möglich sind.