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1 A sequence of measurements

Suppose an operator A has two normalized eigenstates |11) and [|¢2) with eigenvalues a; and
az, respectively. Similarly, an operator B has two normalized eigenstates |¢1) and |¢2) with
eigenvalues by and bs. Assume a1 # as and by # by. The eigenstates satisfy the relations

91) = £ (3len) +lga)),
o) = £ (4ln) —3l¢2)).

a) A measurement of the observable A yields the result a;. What is the state of the system
immediately after the measurement?

b) If we now measure the observable B, what are the possible results? What are the correspon-
ding probabilities?

c) After the measurement of B we now measure A again. What is the probability to obtain

the result a1?

2 Nonrelativistic limit of the Klein-Gordon equation

Consider the general solution
w@w:i/ka@kWﬁﬂ@ (%)

of the free Klein-Gordon equation

16 S0 o 2
Saat@D = V@D + (5°) v@En =0.

a) Derive the corresponding dispersion relation h%w? = m2c! + h2c2k2, where k = |k|. What is
its physical interpretation?

—.

b) Assume that A(k) falls off sufficiently rapidly for large k so that only values of k with
hk/mc < 1 contribute to the integral (x). Using this assumption, expand w(k) up to order
k? and show that the solution of the Klein-Gordon equation is given by

Y(&,t) = e “0lp(Z,t)  with w@w:/j%mﬁwﬁwm,

where wg = mc?/h and wy; = hk?/2m. Why is this the nonrelativistic limit?
c) Insert the result of part b) into the Klein-Gordon equation and show that ¢ satisfies the
free Schrodinger equation. Explain why 1 and ¢ are physically equivalent.

Hint: Making the same assumption as in part b), show that |@/wpp| < 1, which implies
that the ¢ term can be neglected.



3 Uncertainty relation: general case

The goal of this problem is to prove the uncertainty relation

AA-AB > %W[A,BD

Y

where A and B are Hermitian operators and (A) = (¢|A|¢)) for an arbitrary state vector [¢)).
AA is the uncertainty of the operator A, defined by

(AA)? = (A = (4))%) = (W|(A = (A)*4).

) ?Tﬁ;e ) = (A= (A))[) and |g) = (B — (B))|45). Show that (AA)2 = (f]f) and (AB)? =
g19)-

b) Use the Cauchy-Schwarz inequality to show that

(AA)?(AB)? = [(flg).
c¢) Show for an arbitrary complex number z that the inequality

P 2 [ -]

holds. Use this inequality to show that
1 2
AAPABP > |3~ 6l -

d) Show that
(flg) = (AB) — (A)(B) .

e) Use the results of the previous steps to prove the uncertainty relation.
f) Show that the equal sign in the uncertainty relation holds if (A — (A))|¢) = ¢(B — (B))|v)

with a purely imaginary factor c.

4 Uncertainty relation: a concrete example

In the uncertainty relation of the previous problem we now choose the operators to be position
and momentum operator, i.e., A = X and B = P. In this problem we construct the wave packet
that minimizes the uncertainty relation of these two operators. For simplicity, we assume that
the state [¢) in which we compute the uncertainty relation is chosen such that ()| X|¢) = 0 and
(Y| Ply) = po with pg real. (Why are these assumptions justified?)

a) According to problem 3f) we should have

(P —=po)l¢) = cX|4)

with ¢ imaginary. Express this condition in coordinate space and solve the resulting diffe-
rential equation. Write ¢ = ih/A? with A real and derive an expression for the wave packet
¥ (x). Normalize the latter.

b) Compute 9 (p), the (normalized) wave packet in momentum space.

c) Compute AX - AP from the results of a) and b) and compare with the uncertainty relation.



