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1 A sequence of measurements

Suppose an operator A has two normalized eigenstates |ψ1〉 and |ψ2〉 with eigenvalues a1 and
a2, respectively. Similarly, an operator B has two normalized eigenstates |ϕ1〉 and |ϕ2〉 with
eigenvalues b1 and b2. Assume a1 6= a2 and b1 6= b2. The eigenstates satisfy the relations

|ψ1〉 =
1

5
(3|ϕ1〉+ 4|ϕ2〉) ,

|ψ2〉 =
1

5
(4|ϕ1〉 − 3|ϕ2〉) .

a) A measurement of the observable A yields the result a1. What is the state of the system
immediately after the measurement?

b) If we now measure the observable B, what are the possible results? What are the correspon-
ding probabilities?

c) After the measurement of B we now measure A again. What is the probability to obtain
the result a1?

2 Nonrelativistic limit of the Klein-Gordon equation

Consider the general solution

ψ(~x, t) =

∫
d3k A(~k)ei(

~k·~x−ωt) (∗)

of the free Klein-Gordon equation

1

c2
∂2

∂t2
ψ(~x, t)− ~∇2ψ(~x, t) +

(mc
h̄

)2
ψ(~x, t) = 0 .

a) Derive the corresponding dispersion relation h̄2ω2 = m2c4 + h̄2c2k2, where k = |~k|. What is
its physical interpretation?

b) Assume that A(~k) falls off sufficiently rapidly for large k so that only values of k with
h̄k/mc� 1 contribute to the integral (∗). Using this assumption, expand ω(k) up to order
k2 and show that the solution of the Klein-Gordon equation is given by

ψ(~x, t) = e−iω0tϕ(~x, t) with ϕ(~x, t) =

∫
d3k A(~k)ei(

~k·~x−ω1t) ,

where ω0 = mc2/h̄ and w1 = h̄k2/2m. Why is this the nonrelativistic limit?

c) Insert the result of part b) into the Klein-Gordon equation and show that ϕ satisfies the
free Schrödinger equation. Explain why ψ and ϕ are physically equivalent.
Hint: Making the same assumption as in part b), show that |ϕ̈/ω0ϕ̇| � 1, which implies
that the ϕ̈ term can be neglected.
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3 Uncertainty relation: general case

The goal of this problem is to prove the uncertainty relation

∆A ·∆B ≥ 1

2

∣∣〈i[A,B]〉
∣∣ ,

where A and B are Hermitian operators and 〈A〉 = 〈ψ|A|ψ〉 for an arbitrary state vector |ψ〉.
∆A is the uncertainty of the operator A, defined by

(∆A)2 = 〈(A− 〈A〉)2〉 = 〈ψ|(A− 〈A〉)2|ψ〉 .

a) Define |f〉 = (A− 〈A〉)|ψ〉 and |g〉 = (B − 〈B〉)|ψ〉. Show that (∆A)2 = 〈f |f〉 and (∆B)2 =
〈g|g〉.

b) Use the Cauchy-Schwarz inequality to show that

(∆A)2(∆B)2 ≥ |〈f |g〉|2 .

c) Show for an arbitrary complex number z that the inequality

|z|2 ≥
[ 1

2i
(z − z∗)

]2
holds. Use this inequality to show that

(∆A)2(∆B)2 ≥
[
1

2i
(〈f |g〉 − 〈g|f〉)

]2
.

d) Show that

〈f |g〉 = 〈AB〉 − 〈A〉〈B〉 .

e) Use the results of the previous steps to prove the uncertainty relation.

f) Show that the equal sign in the uncertainty relation holds if (A− 〈A〉)|ψ〉 = c(B − 〈B〉)|ψ〉
with a purely imaginary factor c.

4 Uncertainty relation: a concrete example

In the uncertainty relation of the previous problem we now choose the operators to be position
and momentum operator, i.e., A = X and B = P . In this problem we construct the wave packet
that minimizes the uncertainty relation of these two operators. For simplicity, we assume that
the state |ψ〉 in which we compute the uncertainty relation is chosen such that 〈ψ|X|ψ〉 = 0 and
〈ψ|P |ψ〉 = p0 with p0 real. (Why are these assumptions justified?)

a) According to problem 3f) we should have

(P − p0)|ψ〉 = cX|ψ〉

with c imaginary. Express this condition in coordinate space and solve the resulting diffe-
rential equation. Write c = ih̄/∆2 with ∆ real and derive an expression for the wave packet
ψ(x). Normalize the latter.

b) Compute ψ(p), the (normalized) wave packet in momentum space.

c) Compute ∆X ·∆P from the results of a) and b) and compare with the uncertainty relation.
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