Übungen zur Quantenmechanik für LA und Nanoscience Blatt 4 (für die Übungen in der Woche 13.-17.11.)

1 Measurements in a three-dimensional Hilbert space

Consider the following three operators on a three-dimensional complex Hilbert space,

$$
L_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad L_{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad L_{z}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

a) Consider the eigenbasis of L_{z}. What are the possible results if L_{z} is measured? Find $\left\langle L_{x}\right\rangle$, $\left\langle L_{x}^{2}\right\rangle$, and ΔL_{x} in the state for which L_{z} has eigenvalue +1 . (See last week's problem 4b) for the notation.)
b) Find the eigenvalues and the normalized eigenstates of L_{x}. Express the latter in the L_{z}-basis.
c) If the particle is in the state with $L_{z}=-1$ and L_{x} is measured, what are the possible outcomes and their probabilities?
d) Consider the normalized state

$$
|\psi\rangle=\frac{1}{2}\left(\begin{array}{c}
1 \\
1 \\
\sqrt{2}
\end{array}\right) .
$$

If L_{x}^{2} is measured and the result +1 is obtained, what is the state after the measurement? How probable was this result? If L_{z} is measured, what are the outcomes and respective probabilities?
e) A particle is in a state for which the probabilities are $P\left(L_{z}=1\right)=1 / 4, P\left(L_{z}=0\right)=1 / 2$, and $P\left(L_{z}=-1\right)=1 / 4$. Convince yourself that the most general normalized state with this property is

$$
|\psi\rangle=\frac{e^{i \delta_{1}}}{2}\left|L_{z}=1\right\rangle+\frac{e^{i \delta_{2}}}{\sqrt{2}}\left|L_{z}=0\right\rangle+\frac{e^{i \delta_{3}}}{2}\left|L_{z}=-1\right\rangle .
$$

In quantum mechanics, states that only differ by a phase are considered to be equivalent. Does this mean that the factors $e^{i \delta_{i}}$ in the expression above are irrelevant? (Calculate for example $P\left(L_{x}=0\right)$.)

2 The density matrix

More common than single-particle systems in pure states $|\psi\rangle$ are ensembles of N systems, n_{i} of which are in the state $|i\rangle$. (For simplicity, we restrict ourselves to cases where $|i\rangle$ is an element of an orthonormal basis.) Such an ensemble is described by k states $|i\rangle=|1\rangle,|2\rangle, \ldots,|k\rangle$ and by k occupation numbers $n_{i}(i=1,2, \ldots, k)$. A convenient way to assemble all this information is the density matrix (which is really an operator that turns into a matrix once a basis is chosen),

$$
\rho=\sum_{i} p_{i}|i\rangle\langle i|,
$$

where $p_{i}=n_{i} / N$ is the probability that a system picked randomly out of the ensemble is in the state $|i\rangle$. The single-particle systems considered up to now correspond to the situation of a pure ensemble in which all $p_{i}=0$ except one. A general ensemble is mixed. In such an ensemble one considers ensemble averages of operators Ω, which are defined as

$$
\langle\bar{\Omega}\rangle \equiv \sum_{i} p_{i}\langle i| \Omega|i\rangle
$$

The notation with the bar and the angular brackets indicates that two types of averages have been taken: a quantum average $\langle i| \Omega|i\rangle$ for each system in a given state $|i\rangle$, and a classical average over the systems in different states $|i\rangle$.
a) Define $\operatorname{tr}(\Omega \rho) \equiv \sum_{j}\langle j| \Omega \rho|j\rangle$. Show that $\langle\bar{\Omega}\rangle=\operatorname{tr}(\Omega \rho)$. (This demonstrates that ρ contains all the statistical information about the ensemble.)
b) Prove the following list of properties. Also give an interpretation and/or list immediate consequences where possible.
i) $\rho^{\dagger}=\rho$.
ii) $\operatorname{tr} \rho=1$.
iii) $\rho^{2}=\rho$ for a pure ensemble.
iv) $\rho=(1 / k) \mathbb{1}$ for an ensemble uniformly distributed over k states. Here, $\mathbb{1}$ is the identity operator on the space spanned by these states.
v) $\operatorname{tr} \rho^{2} \leq 1$.

3 Time-evolution operator

In the lecture we will consider the so-called time-evolution operator. In an eigenbasis $\{|E\rangle\}$ of the Hamilton operator H it takes the form

$$
U(t)=\sum_{E}|E\rangle\langle E| e^{-i E t / \hbar}
$$

Show that its general form, without reference to any basis, is given by $U(t)=e^{-i H t / \hbar}$.

4 Properties of the Dirac δ-function

Use the relation $\delta(a x)=\delta(x) /|a|$ to show that

$$
\delta[f(x)]=\sum_{i=1}^{n} \frac{\delta\left(x-x_{i}\right)}{|d f / d x|_{x=x_{i}}}
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are the zeros of $f(x)$ (which we assume to be simple zeros).
Hint: Start from the integral

$$
\int_{-\infty}^{+\infty} d x \delta[f(x)] g(x)
$$

and rewrite it as a sum of n integrals, each of which is performed over an infinitesimal interval centered at one of the x_{i}. (What feature of the δ-function allows for this preliminary step?) Then expand $f(x)$ in a Taylor series and keep only the first nonzero contribution.

