Übungen zur Quantenmechanik für LA und Nanoscience Blatt 3 (für die Übungen in der Woche 06.-10.11.)

1 Rotation matrix in two dimensions

Consider the matrix

$$
\Omega=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

a) Show that it is unitary.
b) Show that its eigenvalues are $e^{i \theta}$ and $e^{-i \theta}$.
c) Find the corresponding eigenvectors and show that they are orthogonal.
d) Verify that $U^{\dagger} \Omega U$ is a diagonal matrix, where U is the matrix of eigenvectors of Ω.

2 Commuting Hermitian matrices

By considering the commutator, show that the following Hermitian matrices may be simultaneously diagonalized,

$$
Q=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right), \quad R=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

Find the eigenvectors common to both matrices and verify that under a unitary transformation to this basis, both matrices are diagonalized. Since Q is degenerate and R is not, you must be prudent in deciding which matrix dictates the choice of basis.

3 An operator identity

Show that the operator relation

$$
e^{i K a} X e^{-i K a}=X+a
$$

holds, where X and K are the operators defined in Sec. 2.7 of the lecture.
Hint: First show that $\langle k| X\left|k^{\prime}\right\rangle=i \delta^{\prime}\left(k-k^{\prime}\right)$ by inserting unit operators. Then show that $e^{i K a} X e^{-i K a}|\psi\rangle=(X+a)|\psi\rangle$ for a generic state $|\psi\rangle$ by expanding this state in the $|k\rangle$ basis and again inserting unit operators in the appropriate places.

4 A quantum-mechanical wave function

A generic quantum-mechanical state $|\psi\rangle$ may be expanded in the eigenbasis of the position operator X,

$$
|\psi\rangle=\int_{-\infty}^{+\infty} d x|x\rangle\langle x \mid \psi\rangle=\int_{-\infty}^{+\infty} d x|x\rangle \psi(x)
$$

$\psi(x)$ is called the wave function in the coordinate-space basis. As an example, we will consider the wave function

$$
\psi(x)=\frac{N}{x^{2}+a^{2}},
$$

where N and a are real and positive. Assume that the state $|\psi\rangle$ describes a single-particle system. We will now extract information about this state using the quantum-mechanical postulates.
a) What value should the constant N have so that the wave function is properly normalized? What is then the probability of finding the particle between x and $x+d x$?
b) Determine the expectation value $\langle X\rangle \equiv\langle\psi| X|\psi\rangle$ of the position operator X in the state $|\psi\rangle$ and the associated uncertainty $\Delta X \equiv\langle\psi|(X-\langle X\rangle)^{2}|\psi\rangle^{1 / 2}$.
c) We now consider the momentum operator $P=-i \hbar \frac{d}{d x}$ and its eigenstates $|p\rangle$. In the coordinate-space basis we encounter $\psi_{p}(x)=\langle x \mid p\rangle=e^{i p x / \hbar} / \sqrt{2 \pi \hbar}$, which is normalized to the δ-function. Determine $\langle p \mid \psi\rangle$, the wave function of $|\psi\rangle$ in the momentum-space basis.

Hint: Insert $\mathbb{1}=\int d x|x\rangle\langle x|$ and use contour integration to perform the integral over x.
d) For our state $|\psi\rangle$, compute $\langle P\rangle$ and the corresponding uncertainty ΔP.
e) Verify that the uncertainty relation $\Delta X \Delta P \geq \hbar / 2$ is satisfied.

