Übungen zur Quantenmechanik für LA und Nanoscience Blatt 3 (für die Übungen in der Woche 06.-10.11.)

1 Rotation matrix in two dimensions

Consider the matrix

$$\Omega = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

- a) Show that it is unitary.
- b) Show that its eigenvalues are $e^{i\theta}$ and $e^{-i\theta}$.
- c) Find the corresponding eigenvectors and show that they are orthogonal.
- d) Verify that $U^{\dagger}\Omega U$ is a diagonal matrix, where U is the matrix of eigenvectors of Ω .

2 Commuting Hermitian matrices

By considering the commutator, show that the following Hermitian matrices may be simultaneously diagonalized,

$$Q = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \qquad R = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

Find the eigenvectors common to both matrices and verify that under a unitary transformation to this basis, both matrices are diagonalized. Since Q is degenerate and R is not, you must be prudent in deciding which matrix dictates the choice of basis.

3 An operator identity

Show that the operator relation

$$e^{iKa} X e^{-iKa} = X + a$$

holds, where X and K are the operators defined in Sec. 2.7 of the lecture.

Hint: First show that $\langle k|X|k'\rangle=i\delta'(k-k')$ by inserting unit operators. Then show that $e^{iKa}Xe^{-iKa}|\psi\rangle=(X+a)|\psi\rangle$ for a generic state $|\psi\rangle$ by expanding this state in the $|k\rangle$ basis and again inserting unit operators in the appropriate places.

4 A quantum-mechanical wave function

A generic quantum-mechanical state $|\psi\rangle$ may be expanded in the eigenbasis of the position operator X,

$$|\psi\rangle = \int_{-\infty}^{+\infty} dx \, |x\rangle\langle x|\psi\rangle = \int_{-\infty}^{+\infty} dx \, |x\rangle\psi(x) \,.$$

 $\psi(x)$ is called the wave function in the coordinate-space basis. As an example, we will consider the wave function

$$\psi(x) = \frac{N}{x^2 + a^2} \,,$$

where N and a are real and positive. Assume that the state $|\psi\rangle$ describes a single-particle system. We will now extract information about this state using the quantum-mechanical postulates.

- a) What value should the constant N have so that the wave function is properly normalized? What is then the probability of finding the particle between x and x + dx?
- b) Determine the expectation value $\langle X \rangle \equiv \langle \psi | X | \psi \rangle$ of the position operator X in the state $|\psi\rangle$ and the associated uncertainty $\Delta X \equiv \langle \psi | (X \langle X \rangle)^2 | \psi \rangle^{1/2}$.
- c) We now consider the momentum operator $P=-i\hbar\frac{d}{dx}$ and its eigenstates $|p\rangle$. In the coordinate-space basis we encounter $\psi_p(x)=\langle x|p\rangle=e^{ipx/\hbar}/\sqrt{2\pi\hbar}$, which is normalized to the δ -function. Determine $\langle p|\psi\rangle$, the wave function of $|\psi\rangle$ in the momentum-space basis.

Hint: Insert $1 = \int dx |x\rangle\langle x|$ and use contour integration to perform the integral over x.

- d) For our state $|\psi\rangle$, compute $\langle P\rangle$ and the corresponding uncertainty ΔP .
- e) Verify that the uncertainty relation $\Delta X \Delta P \geq \hbar/2$ is satisfied.