Übungen zur Quantenmechanik für LA und Nanoscience Blatt 1 (für die Übungen in der Woche 23.-27.10.)

1 Finite-dimensional vector spaces, scalar products, and Hermitian matrices

Below, \vec{u} and \vec{v} denote complex N-dimensional vectors, i.e., $\vec{u}, \vec{v} \in \mathbb{C}^{N}$, while A and B denote $N \times N$ complex matrices, i.e., $A, B \in \mathbb{C}^{N \times N}$. The canonical scalar product of two such vectors is given by

$$
\langle u \mid v\rangle=\vec{u}^{\dagger} \cdot \vec{v}=\sum_{n=1}^{N} u_{n}^{*} v_{n},
$$

where $\vec{u}^{\dagger}:=\left(\vec{u}^{T}\right)^{*}$. A matrix is called Hermitian if $A=\left(A^{T}\right)^{*}=: A^{\dagger}$.
a) Show that A is Hermitian if and only if $\langle A u \mid v\rangle=\langle u \mid A v\rangle$ for all \vec{u}, \vec{v}.
b) Show for Hermitian A and B that the product $A B$ is Hermitian if and only if $[A, B]=0$. $[A, B]:=A B-B A$ is called the commutator of A and B.
c) Show that $B A B^{\dagger}$ is Hermitian for Hermitian A and arbitrary B.

2 Finite-dimensional vector spaces and eigenspaces of Hermitian matrices

Let $\vec{u}, \vec{v} \in \mathbb{C}^{N}$ and $A, B \in \mathbb{C}^{N \times N}$ as above.
a) Give an argument why a Hermitian $N \times N$ matrix A has exactly N eigenvalues. Show that all eigenvalues are real.
b) Take A to be Hermitian with nondegenerate eigenvalues (i.e., all eigenvalues are distinct). Show that the eigenvectors to different eigenvalues are orthogonal.
Remark: The most important consequence of the last two results is that the eigenvectors form an orthogonal basis of \mathbb{C}^{N}. A more general theorem states that even in the degenerate case a full orthogonal set of N eigenvectors can be chosen that form such a basis.
c) The space spanned by a complete set of linearly independent eigenvectors w.r.t. a given eigenvalue λ is called its eigenspace $\operatorname{Eig}(A, \lambda)$. What is the dimension of this eigenspace?
d) Let A be Hermitian and $\left\{\vec{e}_{n} ; n=1, \ldots, N\right\}$ be a corresponding orthonormal eigenbasis. Explain the notions "orthonormal" and "eigenbasis". Expand an arbitrary vector \vec{u} in this basis. Give an explicit expression for the expansion coefficients in terms of the scalar product.

3 Matrix properties

a) Given a square matrix A, show that

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr} A}
$$

Hint: This equality can be proven for any square matrix, but for simplicity you can assume that A is diagonalizable.
b) Given a generic linear operator A, show that the operator $A^{\dagger} A$ has real and non-negative eigenvalues only.

4 Infinite-dimensional spaces: A scalar product for square-integrable functions

The vector space \mathbb{H} of square-integrable functions $\left\{\psi: \mathbb{R}^{N} \rightarrow \mathbb{C}\right\}$ may be endowed with a sesquilinear scalar product $\mathbb{H} \times \mathbb{H} \rightarrow \mathbb{C}$ via

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle:=\int d^{N} x \psi_{1}^{*}(\vec{x}) \psi_{2}(\vec{x})
$$

a) Explain the mathematical notions "square integrable" and "sesquilinear scalar product".
b) Show that the definition above satisfies all the requirements of a sesquilinear scalar product, i.e., show that

- for square integrable ψ_{1} and ψ_{2}, the scalar product is finite,
- the scalar product is (anti-) linear in its arguments, and
- the scalar product is positive semidefinite $(\langle\psi \mid \psi\rangle \geq 0)$.

Bonus question: Discuss under what conditions the scalar product is positive definite, i.e., $\langle\psi \mid \psi\rangle \geq 0$ with equality if and only if $\psi=0$.

