Übungen zur Thermodynamik und Quantenstatistik Blatt 13 (für die Übungen in der Woche vom 21.07.)

Aufgabe 1 Geschwindigkeits-Mittelwerte im Fermigas

Berechnen Sie die Geschwindigkeits-Mittelwerte $|\vec{v}|$ und $|\vec{v}|$ für das ideale Fermigas bei T=0.

Aufgabe 2 Strom aus Glühkathode

Um aus einem Metall auszutreten, müssen Elektronen eine Potentialbarriere der Höhe V_0 (relativ zur Fermienergie ε_F) überwinden. Nehmen Sie an, dass die Barriere die z=0 Ebene ist und dass die Elektronen in positiver z-Richtung austreten, wenn $p_z > \sqrt{2m(\varepsilon_F + V_0)}$ gilt. Die Elektronen sollen als ideales Fermigas behandelt werden. Berechnen Sie die Stromdichte der austretenden Elektronen bei der Temperatur T (für die $k_BT \ll \varepsilon_F$ und $k_BT \ll V_0$ gelten soll). Diese Emission von Elektronen wird Richardsoneffekt genannt.

Aufgabe 3 Paulischer Paramagnetismus

Die Elektronen eines Metalls werden als ideales Fermigas mit der Zustandsdichte $z(\varepsilon_p)$ behandelt, wobei $\varepsilon_p = p^2/2m$. In einem äußeren Magnetfeld B sind die Einteilchenenergien $\varepsilon_{p\pm} = \varepsilon_p \mp \mu_B B$, wobei das obere Vorzeichen gilt, wenn das magnetische Moment parallel zum Feld ist. Es wird $\mu_B B \ll \varepsilon_F$ vorausgesetzt, wobei ε_F die Fermienergie bei B = 0 ist.

- a) Berechnen Sie $\varepsilon_F(B) = \mu(T=0,B)$ bis zur 1. Ordnung in B. Hinweis: Für $T \to 0$ werden die mittleren Besetzungszahlen $\overline{n_{\pm}(\varepsilon_p)}$ zu θ -Funktionen.
- b) Berechnen Sie die Anzahl der parallel (+) und antiparallel (-) eingestellten magnetischen Momente, $N_{\pm} = \sum \overline{n_{\pm}(\varepsilon_p)}$, für $T \approx 0$ und bis zur 1. Ordnung in B.
- c) Bestimmen Sie die Magnetisierung $M(B) = \mu_B(N_+ N_-)/V$ als Funktion von $\mu_B B/\varepsilon_F$ und diskutieren Sie das Ergebnis.

Aufgabe 4 Temperaturabhängige Korrektur zum Paramagnetismus

Die Elektronen eines idealen Fermigases haben im Magnetfeld B die Energien $\varepsilon_{p\pm}=p^2/2m\mp\mu_B B$. Die Fermienergie bei B=0 sei ε_F . Es gelte $k_B T\ll \varepsilon_F$ und $\mu_B B\ll \varepsilon_F$.

a) Berechnen Sie die Anzahl N_{\pm} der parallel (+) und antiparallel (-) zum Feld eingestellten magnetischen Momente bis zu den Ordnungen B und T^2 mit Hilfe der in der Vorlesung hergeleiteten Entwicklung

$$\int_0^\infty d\varepsilon \, \overline{n(\varepsilon)} f(\varepsilon) = \int_0^\mu d\varepsilon \, f(\varepsilon) + \frac{\pi^2}{6\beta^2} f'(\mu) + \dots \qquad (k_B T \ll \varepsilon_F) \,.$$

Das Ergebnis für N_{\pm} enthält zunächst das chemische Potential μ .

- b) Entwickeln Sie ε_F/μ bis zu den Ordnungen B und T^2 .
- c) Drücken Sie N_{\pm} als Funktion von ε_F (statt μ) aus.
- d) Geben Sie die Magnetisierung $M(T,B) = \mu_B(N_+ N_-)/V$ an. Im Ergebnis sollte wieder ε_F (nicht μ) vorkommen.