Übungen zur Thermodynamik und Quantenstatistik Blatt 12 (für die Übungen in der Woche vom 14.07.)

Aufgabe 1 Anharmonische Korrekturen im Vibrationsanteil

Die Energien der Vibrationszustände eines zweiatomigen Moleküls seien

$$\varepsilon_n = \hbar\omega \left[\left(n + \frac{1}{2} \right) - \delta \left(n + \frac{1}{2} \right)^2 \right].$$

Die folgenden Berechnungen sollen bis zur ersten Ordnung in der kleinen Größe δ durchgeführt werden. Die Einführung der Variablen $x = \beta \hbar \omega = T_{\rm vib}/T$ vereinfacht die Rechnung.

- a) Bestimmen Sie die kanonische Zustandssumme $z_{\rm vib}$ für ein einzelnes Molekül.
- b) Berechnen Sie daraus die Vibrationsenergie $E_{\rm vib}$ für N unabhängige Moleküle.
- c) Geben Sie die führenden Beiträge zur Wärmekapazität für tiefe und hohe Temperaturen an.

Aufgabe 2 Zustandssummen für drei Teilchen

Drei Teilchen befinden sich in zwei Niveaus (mit den Energien $\varepsilon_0 = 0$ und $\varepsilon_1 = \varepsilon$). Es handelt sich um (i) klassische, unterscheidbare Teilchen, (ii) Bosonen mit Spin 0 und (iii) Fermionen mit Spin 1/2. Geben Sie die jeweiligen kanonischen Zustandssummen an.

Aufgabe 3 Schwankung der Besetzungszahlen im Quantengas

Leiten Sie die Beziehung

$$(\Delta n_j)^2 = -k_B T \frac{\partial \overline{n_j}}{\partial \varepsilon_j}$$

für die Schwankung Δn_j der Besetzungszahlen n_j eines idealen Quantengases ab. Dabei steht $j = (\vec{p}, s_z)$ für die Quantenzahlen eines Einteilchenzustands. Bestimmen Sie die relative Schwankung $(\Delta n_j)^2/\overline{n_j}^2$ für ein Fermi- und ein Bosegas.

Aufgabe 4 Bosegas in zwei Dimensionen

(Für diese Aufgabe müssten Sie bitte die Vorlesung vom 16.07. abwarten.)

Zeigen Sie, dass es in einem idealen Bosegas in zwei Dimensionen keine Bose-Einstein-Kondensation gibt. Werten Sie dazu den Zusammenhang zwischen der Teilchenzahl N und dem chemischen Potential μ aus und diskutieren Sie das Ergebnis für $\mu \to 0$.