Übungen zur Thermodynamik und Quantenstatistik Blatt 11 (für die Übungen in der Woche vom 07.07.)

Aufgabe 1 Adiabatische Entmagnetisierung

Ein System besteht aus N unabhängigen Spin-1/2 Teilchen (Elektronen) mit dem magnetischen Moment μ_B . Die Spins stellen sich in einem homogenen Magnetfeld der Stärke B ein.

a) Gehen Sie von der in der Vorlesung berechneten Zustandssumme $Z(T, B, N) = [z(T, B)]^N$ mit $z(T, B) = 2 \cosh(\mu_B B/k_B T)$ und vom Differential dF = -SdT - VMdB der freien Energie $F = -k_B T \ln Z$ aus (N = const). Berechnen Sie hieraus die Entropie S und die Magnetisierung M.

Hinweis: Die Rechnung wird übersichtlicher, wenn Sie $x = \mu_B B/k_B T$ definieren.

- b) Was ergibt sich für $T \to 0$ und für $T \to \infty$?
- c) Zu Anfang sei die Temperatur des Systems gleich T_a und das Feld gleich B_a . Nun wird das Feld im thermisch isolierten System langsam auf einen Wert B_b abgesenkt. Welche Temperatur T_b stellt sich dann ein? Skizzieren Sie die Entropie als Funktion der Temperatur für zwei verschiedene Werte $(B_a \text{ und } B_b)$ des Magnetfelds.

Aufgabe 2 Zustandssumme für Rotationen eines zweiatomigen Gases

In Kap. 5.2 der Vorlesung wurde die Einteilchen-Zustandssumme für Rotationen in der Form

$$z_{\text{rot}}(T) = \sum_{\ell=0}^{\infty} (2\ell+1)e^{-\ell(\ell+1)T_{\text{rot}}/2T}$$

angegeben. Man kann die Summe nun durch ein Integral ersetzen und die dabei auftretenden Korrekturen mit der Eulerschen Summenformel

$$\sum_{\ell=l_0}^{\ell_1} f(\ell) = \int_{\ell_0}^{\ell_1} d\ell \, f(\ell) + \frac{f(\ell_0) + f(\ell_1)}{2} - \frac{f'(\ell_0) - f'(\ell_1)}{12} + \frac{f'''(\ell_0) - f'''(\ell_1)}{720} + \dots$$

berechnen. Für hohe Temperaturen $(T\gg T_{\rm rot})$ liefert dieses Vorgehen eine Entwicklung in $T_{\rm rot}/T$. Zeigen Sie, dass

$$z_{
m rot} = rac{2T}{T_{
m rot}} + rac{1}{3} + rac{T_{
m rot}}{30T} + \mathcal{O}\left(rac{T_{
m rot}^2}{T^2}
ight).$$

Aufgabe 3 Rotationsanteil für die Moleküle H₂, D₂ und HD

Wir betrachten drei wasserstoffartige Gase, die jeweils aus den Molekülen H_2 , D_2 oder HD bestehen. Mit D wird Deuterium bezeichnet, also ein Wasserstoffatom mit einem Deuteron (Proton + Neutron) als Kern. Das Deuteron hat den Spin 1. Im D_2 -Molekül können diese Spins zu S=0, 1 oder 2 koppeln. Die Bezeichnungen "Ortho" bzw. "Para" gelten für Zustände, bei denen der Spinanteil symmetrisch bzw. antisymmetrisch ist.

- a) Geben Sie für Rotationen die Einteilchen-Zustandssummen $z_{\text{even}}(T)$ (für gerades ℓ) und $z_{\text{odd}}(T)$ (für ungerades ℓ) an und entwickeln Sie diese getrennt für $T \ll T_{\text{rot}}$ und $T \gg T_{\text{rot}}$ (siehe Kap. 5.2 der Vorlesung und Aufgabe 2). Mögliche Faktoren für die Entartung der Spinzustände sollen hierbei noch nicht berücksichtigt werden.
- b) Geben Sie für alle drei Gase $z_{\text{rot}}(T)$ unter Berücksichtigung der Austauschsymmetrie (also mit Faktoren für die Entartung der Spinzustände) an.
- c) Für eine gegebene Molekülsorte sei η das Verhältnis von Ortho- zu Parazuständen. Welches Verhältnis $\eta(T_0)$ erhält man, wenn die Proben hinreichend lange bei einer hohen Temperatur $T_0 \gg T_{\rm rot}$ gelagert wurden?
- d) Berechnen Sie die spezifische Wärme $c_{\text{rot}}(T)$ dieser Proben, wenn Sie nach der Lagerung bei $T = T_0$ auf eine tiefe Temperatur $T \ll T_{\text{rot}}$ abgekühlt wurden. Nehmen Sie dabei an, dass das Verhältnis η konstant bleibt, also der Wert $\eta(T_0)$ in die Rechnung einfließt (warum?).

Aufgabe 4 Virialkoeffizienten für Lennard-Jones-Potential

Ein realistischer Ansatz für das Atom-Atom-Potential ist das Lennard-Jones-Potential

$$w(r) = 4\varepsilon \left(\frac{\sigma^{12}}{r^{12}} - \frac{\sigma^6}{r^6}\right) = \varepsilon \left(\frac{r_0^{12}}{r^{12}} - 2\frac{r_0^6}{r^6}\right).$$

Der $1/r^6$ -Term des attraktiven Teils entspricht einer induzierten Dipol-Dipol-Wechselwirkung. Der $1/r^{12}$ -Term ist ein phänomenologischer Ansatz für die starke Repulsion bei kleineren Abständen. Realistische Parameter für ⁴He-Atome sind $\varepsilon = 10.2\,k_B\mathrm{K}$ und $r_0 = 2.87\,\text{Å}$.

- a) Was ist die Beziehung zwischen σ und r_0 ? Skizzieren Sie das Potential. Wo liegen die Nullstelle und das Minimum des Potentials?
- b) Berechnen Sie den Virialkoeffizienten B(T) unter Verwendung von $|\beta w| \ll 1$ im attraktiven Bereich des Potentials und von $e^{-\beta w} \approx 0$ im Bereich $r \leq \sigma$. Geben Sie die Parameter a und b der van der Waals-Gleichung an.