Übungen zur Thermodynamik und Quantenstatistik Blatt 8 (für die Übungen in der Woche vom 16.06.)

Aufgabe 1 Differenz $C_P - C_V$ für van der Waals-Gas

Das van der Waals-Gas genügt der Zustandsgleichung (mit $v = V/\nu$ = Volumen pro Mol)

$$P = \frac{RT}{v - b} - \frac{a}{v^2} \,. \tag{1}$$

- a) Berechnen Sie die Differenz $C_P C_V$ der Wärmekapazitäten.
- b) Bestimmen Sie den führenden Korrekturterm zum idealen Gas mit $C_P C_V = \nu R$.
- c) Schätzen Sie die relative Größe des Korrekturterms für Kohlendioxid bei Normalbedingungen ab. Hierfür ist der Parameter $a=27(RT_{\rm kr})^2/(64P_{\rm kr})$ durch die kritischen Werte $P_{\rm kr}=71.5$ bar und $T_{\rm kr}=304.2$ K gegeben.

Aufgabe 2 Expansionskoeffizient des van der Waals-Gases

Berechnen Sie den Ausdehnungskoeffizienten $\alpha = (\partial V/\partial T)_P/V$ als Funktion von P und v für die van der Waals-Gleichung (1).

Aufgabe 3 Inversionskurve im Joule-Thomson-Prozess

Das Vorzeichen des Joule-Thomson-Koeffizienten

$$\mu_{\rm JT} = \left(\frac{\partial T}{\partial P}\right)_H = \frac{V}{C_P}(T\alpha - 1)$$

bestimmt, ob es im gleichnamigen Prozess zu einer Abkühlung oder Erwärmung kommt. Bestimmen Sie die durch $\mu_{\rm JT}=0$ definierten Inversionskurven $T=T_i(v)$ und $P=P_i(T)$ für das van der Waals-Gas. Skizzieren und diskutieren Sie die Kurve $P_i(T)$.

Aufgabe 4 Kreisprozess mit idealem Gas

Für ein einatomiges ideales Gas wird ein quasistatischer Kreisprozess durchgeführt, der aus den Wegen 1, 2, 3 und 4 besteht:

- 1: Isotherme Expansion von V_1 auf V_2 $T = T_1 = \text{const}$
- 2: Isochore Abkühlung von T_1 auf T_2 $V = V_2 = \text{const}$
- 3: Isotherme Kompression von V_2 auf V_1 $T = T_2 = \text{const}$
- 4: Isochore Erwärmung von T_2 auf T_1 $V = V_1 = \text{const}$
- a) Skizzieren Sie den Prozess in einem P-V-Diagramm.
- b) Geben Sie die Arbeits- und Wärmeleistungen für die einzelnen Schritte an.
- c) Berechnen Sie den Wirkungsgrad (geleistete Arbeit relativ zu insgesamt aufgenommener Wärme) und vergleichen Sie ihn mit dem des idealen Carnotprozesses.