Übungen zur Thermodynamik und Quantenstatistik Blatt 3 (für die Übungen in der Woche vom 12.05.)

Problem 1 Volumen einer n-dimensionalen Kugel

a) Aus Dimensionsgründen muss das Volumen einer n-dimensionalen Kugel mit Radius R die Form

$$V_n(R) = C_n R^n$$

haben. Berechnen Sie C_n .

Hinweis: Benutzen Sie die Beziehung

$$(\sqrt{\pi})^n = \int_{-\infty}^{\infty} d^n x \, \exp\left(-\sum_{i=1}^n x_i^2\right) = \int d\Omega_n \int_0^{\infty} dr \, r^{n-1} e^{-r^2}$$

zur Berechnung des Winkelintegrals $\int d\Omega_n$.

b) Benutzen Sie die Stirlingsche Formel für die Fakultät, um zu zeigen, dass für großes n

$$V_n(R) \approx \frac{1}{\sqrt{\pi n}} \left(\frac{2\pi e}{n}\right)^{n/2} R^n$$
.

Problem 2 Kugelschale in n Dimensionen

a) Zeigen Sie, dass das Volumen einer n-dimensionalen Kugel mit Radius R für große n praktisch in einer dünnen Oberflächenschicht konzentriert ist, d.h. berechnen Sie das Verhältnis des Volumens einer Oberflächenschicht der Dicke $\delta R \ll R$ zum Gesamtvolumen und zeigen Sie, dass dieses Verhältnis für großes n gegen 1 geht.

Hinweis: Sie brauchen nur die Beziehung $V_n(R) = C_n R^n$, nicht die explizite Form von C_n .

b) Diskutieren Sie den Zusammenhang dieses Ergebnisses mit der Definition der mikrokanonischen Zustandssumme. Beziehen Sie sich dabei auf das Beispiel des idealen Gases.

Problem 3 Spinsystem I

Ein System bestehe aus 4 Elektronen mit Spin $\frac{1}{2}$, die jeweils in den Zuständen "Spin oben" und "Spin unten" sein können.

- a) Geben Sie alle Mikrozustände des Systems an.
- b) Geben Sie die möglichen Realisierungen für Zustände (n_1, n_2) an, in denen n_1 Elektronen Spin oben und n_2 Elektronen Spin unten haben.
- c) Bestimmen Sie die Wahrscheinlichkeiten der Zustände (n_1, n_2) .

Problem 4 Spinsystem II

In einem Kristallgitter befindet sich an jedem Gitterplatz ein ungepaartes Elektron. Mit dem Spin \vec{s}_{ν} (hier ohne \hbar) des ν -ten Elektrons ist ein magnetisches Moment $\vec{\mu}_{\nu} = -2\mu_{B}\vec{s}_{\nu}$ verknüpft, wobei μ_{B} das Bohrsche Magneton ist. Im Magnetfeld \vec{B} hat ein Teilchen die Energie $\varepsilon = -\vec{\mu} \cdot \vec{B}$. Relativ zum Feld $\vec{B} = B\hat{z}$ kann sich der Spin parallel oder antiparallel einstellen, d.h. $s_{\nu}^{z} = \pm 1/2$. Die Mikrozustände $r = (s_{1}^{z}, s_{2}^{z}, \dots, s_{N}^{z})$ haben die Energie

$$E_r(B) = 2\mu_B B \sum_{\nu=1}^{N} s_{\nu}^z.$$

Berechnen Sie die Zustandssumme $\Omega(E, B)$.

Hinweis: Welchen Wert E_n hat die Energie, wenn genau n magnetische Momente parallel zum Magnetfeld stehen? Geben Sie die Anzahl Ω_n der Mikrozustände mit der Energie E_n an. Wenn δE so gewählt wird, dass im Intervall δE gerade einer der E_n -Werte liegt, gilt $\Omega(E,B) = \Omega_n$ mit $E \approx E_n$. Setzen Sie $n \gg 1$ und $N-n \gg 1$ voraus. Zeigen Sie unter Benutzung der Stirlingschen Formel, dass

$$\ln\Omega(E,B) = -\left(\frac{N}{2} - \frac{E}{2\mu_B B}\right) \ln\left(\frac{1}{2} - \frac{E}{2N\mu_B B}\right) - \left(\frac{N}{2} + \frac{E}{2\mu_B B}\right) \ln\left(\frac{1}{2} + \frac{E}{2N\mu_B B}\right).$$

Welche Änderung ergibt sich, wenn das Intervall δE mehrere E_n -Werte umfasst?