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Quantum Electrodynamics
Problem Set 13 (for the exercises on July 16 and 17)

The first three problems are regular exercises. The remaining problems are optional. They cover
a number of important results that were stated in class without proof. In order to gain a better
understanding of radiative corrections you are strongly encouraged to do these problems as well.

Problem 1 Bremsstrahlung

a) When we discussed Bremsstrahlung we chose a reference frame in which

kµ = (k, k⃗) , pµ = E(1, v⃗) , p′
µ
= E(1, v⃗ ′)

and introduced the function

I(v⃗, v⃗ ′) = −
∫
dΩk̂

4π

(
p′

p′ · k̂
− p

p · k̂

)2

.

Show that I(v⃗, v⃗ ′) = 2fIR(q2) for all values of q2 < 0, where q = p′ − p and

fIR(q
2) =

∫ 1

0
dξ

m2 − q2

2

m2 − q2ξ(1− ξ)
− 1 .

Hint: Use the method of Feynman parameters to integrate the mixed term.

b) Show that in the limit −q2 → ∞ we have

I(v⃗, v⃗ ′) → 2 ln
(
−q2

m2

)
.

Problem 2 The electron vertex function

a) If p and p′ are the 4-momenta of external electrons and q = p′ − p, show that q2 ≤ 0.

b) The electron vertex function Γµ(p′, p) can be expressed in terms of p, p′, γµ, and constants
such as m and e. Since Γµ transforms as a vector (why?), it can be written as

Γµ = Aγµ +B(p′
µ
+ pµ) + C(p′

µ − pµ) .

Show that A, B, and C must be scalar functions and that they can only depend on q2.
Hint: Γµ always appears in the combination ū(p′)Γµ(p′, p)u(p).

c) Use the Ward identity qµΓµ = 0 to show that A and B can be nonzero but that C must be
zero. Same hint as in b).
Note: The Ward identity qµΓ

µ = 0 holds even though the photon is off shell. The reason
for this is explained at the end of Sec. 7.5 of the lecture.

d) Use the Gordon identity from Problem 7.1 to show that Γµ can be written in the form

Z2Γ
µ(p′, p) = γµF1(q

2) +
iσµνqν
2m

F2(q
2) .
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Problem 3 Form factors, electric charge, and magnetic moment

The scattering of an electron from an external classical electromagnetic field Acl can be described
by adding an interaction term

∆Hint =

∫
d3x eAcl

µ j
µ

to the QED Hamiltonian, where jµ = ψ̄γµψ is the electromagnetic current. In leading order,
the S-matrix element for scattering from this field is

iM(2π)δ(p′
0 − p0) = −ieū(p′)γµu(p) Ãcl

µ (p
′ − p) ,

where Ãcl
µ (q) is the Fourier transform of Acl

µ (x). When the vertex corrections are included, this
becomes

iM(2π)δ(p′
0 − p0) = −ieū(p′)Z2Γ

µ(p′, p)u(p) Ãcl
µ (p

′ − p) .

a) Consider a nonrelativistic electron and take Acl to be a classical electrostatic potential,
Acl

µ (x) = (φ(x⃗), 0⃗). Show that

iM = −ieū(p′)Z2Γ
0(p′, p)u(p) φ̃(q⃗) .

If the electrostatic field varies slowly over space, we can take the limit q⃗ → 0 in the spinor
matrix element. Using a nonrelativistic result from Problem 11.2b), show that in this limit

iM = −ieF1(0)φ̃(q⃗) 2mξ
′†ξ .

This is the Born approximation for scattering from a potential

V (x⃗) = eF1(0)φ(x⃗) .

We thus conclude that F1(0) is the electric charge of the electron in units of e, i.e., F1(0) = 1.

b) We now repeat this analysis for a static vector potential, Acl
µ (x) = (0, A⃗cl(x⃗)), i.e.,

iM = ie

[
ū(p′)

(
γiF1 +

iσiνqν
2m

F2

)
u(p)

]
Ãi

cl(q⃗) . (1)

To take the nonrelativistic limit, we need to extract the term linear in qj in the square
brackets in Eq. (1). For the F2-term this is quite easy. First show, using the definition
σij = i

2 [γ
i, γj ], that this term becomes

ū(p′)
iσijqj
2m

F2(0)u(p) =
−iεijkqj

2m
F2(0)ū(p

′) diag(σk, σk)u(p) .

Now recall from Problem 11.1a) that in the nonrelativistic limit we have

u(p) ≈
√
m

(
ξ
ξ

)
and show that the F2-term becomes

2mξ′
†
(
−i
2m

εijkqjσkF2(0)

)
ξ

in this limit. For the F1-term we use the Gordon identity,

ū(p′)γiu(p) =
1

2m
(p′ + p)iū(p′)u(p) +

i

2m
ū(p′)σikqku(p) .
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The first term is spin-independent and thus irrelevant for the magnetic-moment interaction
we are interested in (it actually corresponds to an interaction of the magnetic field with the
orbital angular momentum). Therefore we do not consider it further. Use the similarity of
the second term with the structure of the F2-term to show that in the nonrelativistic limit
Eq. (1) becomes

iM = −i(2m) eξ′
†
(
−1

2m
σk[F1(0) + F2(0)]

)
ξB̃k(q⃗) ,

where B̃k(q⃗) = iεijkqiÃj
cl(q⃗) is the Fourier transform of the magnetic field produced by

A⃗cl(x⃗). This result can again be interpreted as the Born approximation for scattering from
a potential that has the form of a magnetic-moment interaction,

V (x⃗) = −⟨µ⃗⟩ · B⃗(x⃗) with ⟨µ⃗⟩ = e

m
[F1(0) + F2(0)]ξ

′† σ⃗

2
ξ .

We can write this as

µ⃗ = g
( e

2m

)
S⃗ ,

where S⃗ = σ⃗/2 is the electron spin and g = 2[F1(0) + F2(0)] = 2 + 2F2(0).

Problem 4 One-loop contribution to the electron vertex function

In class we computed the one-loop contribution to the electron vertex function but omitted some
of the intermediate steps. We now fill in the gaps.

a) Using some identities from Problem 11.3b), show that

−igνρū(p′)(−ieγν)i(/k ′ +m)γµi(/k +m)(−ieγρ)u(p)
= 2ie2ū(p′)[/kγµ/k ′ +m2γµ − 2m(k + k′)µ]u(p) . (2)

b) Starting from the RHS of Eq. (2) and using∫
d4ℓ

(2π)4
ℓµ

D3
= 0 and

∫
d4ℓ

(2π)4
ℓµℓν

D3
=

1

4
gµν

∫
d4ℓ

(2π)4
ℓ2

D3

with ℓ = k + yq − zp and D = ℓ2 −∆+ iε as defined in class, show that

ū(p′) δΓµ(p′, p)u(p) = 2ie2
∫

d4ℓ

(2π)4

∫ 1

0
dxdydz δ(x+ y + z − 1)

2

D3

· ū(p′)
[
γµ

(
−1

2
ℓ2 + (1− x)(1− y)q2 + (1− 4z + z2)m2

)
+
iσµνqν
2m

2m2z(1− z)

]
u(p) .

Problem 5 Infrared divergences in the vertex function

The infrared divergence we encountered in δF1(q
2) can be regularized by a small photon mass µ.

We found in class that the part which dominates in the µ→ 0 limit is

δF1(q
2) =

α

2π

∫ 1

0
dxdydz δ(x+ y + z − 1)

[
m2(1− 4z + z2) + q2(1− x)(1− y)

m2(1− z)2 − q2xy + µ2z
− m2(1− 4z + z2)

m2(1− z)2 + µ2z

]
.

In the following we only keep divergent terms.

a) The divergence comes from the region where z ≈ 1. Use this fact to show that

δF1(q
2) =

α

2π

∫ 1

0
dz

∫ 1−z

0
dy

[
−2m2 + q2

m2(1− z)2 − q2y(1− y − z) + µ2
− −2m2

m2(1− z)2 + µ2

]
.
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b) Now change variables to y = (1− z)ξ and w = 1− z and show that

δF1(q
2) =

α

4π

∫ 1

0
dξ

[
−2m2 + q2

m2 − q2ξ(1− ξ)
ln

(
m2 − q2ξ(1− ξ)

µ2

)
+ 2 ln

(
m2

µ2

)]
.

c) Show that in the limit µ→ 0 this becomes

δF1(q
2) = − α

2π
fIR(q

2) ln
(
−q2 or m2

µ2

)
with fIR(q

2) =

∫ 1

0
dξ

m2 − q2

2

m2 − q2ξ(1− ξ)
− 1 .

Recall from Problem 1b) that fIR(q2) → ln(−q2/m2) for −q2 → ∞.

d) Show that fIR(q2) > 0 for q2 < 0.

Problem 6 The electron self-energy

In class we discussed the O(α) contribution Σ2 to the electron self-energy, given by the diagram

p
•

k
•
p

p− k

In the following we compute this diagram, using the methods introduced in Sec. 7.3.2 of the
lecture.

a) Starting from

−iΣ2(p) = (−ie)2
∫

d4k

(2π)4
γµ

i(/k +m0)

k2 −m2
0 + iε

γµ
−i

(p− k)2 − µ2 + iε
,

introduce a Feynman parameter, complete the square, and use symmetries to show that

−iΣ2(p) = −e2
∫ 1

0
dx

∫
d4ℓ

(2π)4
−2x/p+ 4m0

(ℓ2 −∆+ iε)2

with ∆ = −x(1−x)p2+xµ2+(1−x)m2
0. Here, µ is a small photon mass that was introduced

to regulate the IR divergence of the integral.

b) The integral above is UV-divergent. Use Pauli-Villars regularization, perform a Wick rota-
tion, and compute the momentum integral to show that

Σ2(p) =
α

2π

∫ 1

0
dx (2m0 − x/p) ln

(
xΛ2

(1− x)m2
0 + xµ2 − x(1− x)p2

)
,

where Λ is the mass of the fictitious heavy photon.

c) Show that the O(α) mass shift of the electron is given by δm = m −m0 = Σ2(/p = m) ≈
Σ2(/p = m0) with

δm =
α

2π
m0

∫ 1

0
dx (2− x) ln

(
xΛ2

(1− x)2m2
0 + xµ2

)
Λ→∞→ 3α

4π
m0 ln

(
Λ2

m2
0

)
.

d) Show that the O(α) shift of Z2 is given by

δZ2 =
dΣ2

d/p

∣∣∣∣
/p=m

=
α

2π

∫ 1

0
dx

[
−x ln xΛ2

(1− x)2m2 + xµ2
+ 2(2− x)

x(1− x)m2

(1− x)2m2 + xµ2

]
.
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e) Show that δZ2 = −I1(0), where I1(q2) is the integral introduced in Sec. 7.3.2 that leads to
a correction to F1(q

2), i.e.,

I1(q
2) =

α

2π

∫ 1

0
dxdydz δ(x+ y + z − 1)

[
ln zΛ

2

∆′ +
(1− x)(1− y)q2 + (1− 4z + z2)m2

∆′

]
with ∆′ = −xyq2 + (1− z)2m2 + zµ2.
Hint: Use integration by parts.

Problem 7 The photon two-point function

In class we showed that the exact photon two-point function is given by

µ ν = + 1PI + 1PI 1PI + . . .

=
−igµν
q2

+
−igµρ
q2

[
i(q2gρσ − qρqσ)Π(q2)

] −igσν
q2

+ . . . ,

where 1PI stands for the sum of all one-particle irreducible photon self-energy diagrams. In the
following we sum this geometric series.
a) Define ∆ρ

ν = δρν − qρqν/q
2 and show that ∆ρ

σ∆σ
ν = ∆ρ

ν .

b) Use this result to show that

µ ν =
−igµν
q2

+
−igµρ
q2

∆ρ
ν

[
Π(q2) + Π2(q2) + . . .

]
=

−i
q2[1−Π(q2)]

(
gµν −

qµqν
q2

)
+

−i
q2

(
qµqν
q2

)
.

Problem 8 The Uehling potential

In class we derived the following expression for the one-loop contribution to Π(q2),

Π̂2(q
2) = Π2(q

2)−Π2(0) = −2α

π

∫ 1

0
dxx(1− x) ln

(
m2

m2 − x(1− x)q2

)
.

In the following we consider the nonrelativistic limit (as in problems 11.1 and 11.2). The
Coulomb potential then gets modified according to

V (x⃗) =

∫
d3q

(2π)3
eiq⃗·x⃗

−e2

|q⃗|2[1− Π̂2(−|q⃗|2)]

=
ie2

(2π)2r

∫ ∞

−∞
dQ

QeiQr

Q2 + µ2
[
1 + Π̂2(−Q2) +O(α2)

]
,

where Q = |q⃗| and a small photon mass µ has been introduced to regulate the Coulomb potential.

a) Analyze the analytic structure of the integrand in the complex Q plane and show that the
leading contribution to V (r) comes from the pole at Q = iµ, resulting in V (r) = −α/r.

b) Show that the contribution to the potential from the branch cut beginning at Q = 2mi is

δV (r) = −α
r
· 2
π

∫ ∞

2m
dq
e−qr

q

α

3

√
1− 4m2

q2

(
1 +

2m2

q2

)
.

c) Show that in the limit r ≫ 1/m this becomes

δV (r) ≈ −α
r
· α

4
√
π

e−2mr

(mr)3/2
.

This radiative correction to the Coulomb potential is called the Uehling potential.
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