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Problem 1 Cross sections in terms of the S-matrix

In this problem we will derive the formula for the differential cross section dσ in terms of the
invariant matrix element M that was stated without proof in class.
Since the wave packets describing the in- and out-states are localized in space, they can be
constructed independently at different locations. Therefore the initial state can be written in
terms of in-states of definite momentum as
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∫
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The factor e−i⃗b·⃗kB accounts for the fact that in a scattering experiment the two beams don’t
always collide head-on but can be displaced in the transverse direction by an amount b⃗ (called
the “impact parameter”), see figure.
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Similarly, the final state can be written as

out⟨φ1 · · ·φn| =
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∫
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 out⟨p⃗1 · · · p⃗n| .

a) Instead of working with out-states described by wave packets it is more convenient to use
out-states of definite momentum as the final states in the scattering amplitude. Assume that
the wave packets are sufficiently narrow in momentum space so that the detectors mainly
measure momentum and do not resolve positions at the level of de Broglie wavelengths.
Show that under this assumption the probability for the initial state |φAφB⟩in to scatter
into a final state of n particles with momenta in the small region d3p1 · · · d3pn is

P (AB → 1 · · ·n) =
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 |out⟨p⃗1 · · · p⃗n|φAφB⟩in|2 ,

i.e., the normalization factors are included after squaring the amplitude. Note that P can
depend on the impact parameter b⃗.

b) Assume that we have a single target particle (A) and many incident particles (B) with
different impact parameters. Show that the number of scattering events is

dN =

∫
d2b nB (⃗b)P (⃗b) ,
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where nB (⃗b) is the number density per unit area of the B particles. If nB is constant over
the range of integration, show that the cross section is

dσ =

∫
d2b P (⃗b) .

c) The formula for dσ now becomes
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Express the last two factors in terms of M as defined in class (you can drop the 1 in S = 1+
iT since we are not interested in the trivial case of forward scattering without interactions).
Then use one of the δ(4)-functions and another δ(2)-function (from the integration over d2b)
to perform the six integrals over d3k′i.
Since the initial wave packets are localized in momentum space (centered on p⃗A and p⃗B), all
factors that are smooth functions of k⃗i can be evaluated at p⃗i and pulled out of the integrals.
Show that this yields
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where |vA − vB| is the relative velocity of the beams as viewed from the laboratory frame.

d) Real detectors have finite resolution and therefore sum incoherently over momentum bins
of finite size. The bin size is normally larger than the momentum spread of the initial
wave packets. This allows us to approximate kA + kB in the δ-function by its central value,
pA + pB. Show that this finally yields
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as stated in class. Note that all dependence on the shape of the wave packets has disap-
peared.

e) Now consider the special case of two particles in the final state. Use the δ-function to
integrate over 4 of the 6 momentum components (in spherical coordinates) to show that(

dσ

dΩ

)
CM

=
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,

where ECM is the total initial energy. Show how to compute |p⃗1| from ECM, m1, and m2.

f) Show that if all four particles have identical masses, this becomes(
dσ

dΩ

)
CM

=
|M|2

64π2E2
CM

.
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Problem 2 Decays of scalar particles

a) Consider a theory of two real scalar fields Φ and φ with masses M and m, respectively, and
an interaction Lint = gΦφφ. The interaction term allows a Φ particle to decay into two φ
particles, provided that M > 2m. Assume that this condition is satisfied and calculate the
lifetime of the Φ particle to lowest order in g.

b) Now consider a theory of a real scalar field φ and a complex scalar field χ with Lint = gφχ†χ.
Assuming that mφ > 2mχ, calculate the lifetime of the φ particle to lowest order in g.

Hint 1: It is probably easiest to use “contractions with external legs” (see Sec. 5.8.3 of the
lecture) to show that M = 2g in a) and M = g in b).

Hint 2: Pay attention to the difference between distinguishable and indistinguishable particles.
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