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Problem 1 Particle creation by a classical source, Part II

Recall from Problem 3.3 that the creation of Klein-Gordon particles by a classical source can be
described by the Hamiltonian

H = H0 +

∫
d3x (−j(t, x⃗)φ(x)) ,

where H0 is the free KG-Hamiltonian, φ(x) is the real KG-field, and j(x) is a c-number real
scalar function. We found that if the system is in the vacuum state before the source is turned
on, the source will create a mean number of particles

⟨N⟩ =
∫

d3p

(2π)3
1

2Ep⃗
|ȷ̃(p)|2 ,

where ȷ̃(p) is the Fourier transform of j for 4-momenta p such that p2 = m2. In this problem
we will verify that statement and extract more detailed information by using a perturbation
expansion in the strength of the source. Before you start, read the hints at the end of the
problem.
a) Show that the probability that the source creates no particles at all is given by

P (0) = lim
T→∞

∣∣⟨0|U(T,−T )|0⟩
∣∣2 = ∣∣∣⟨0|T{exp

[
i

∫
d4x j(x)φI(x)

]}
|0⟩

∣∣∣2 .
b) Evaluate the term in P (0) of order j2, and show that P (0) = 1− λ+O(j4), where λ equals

the expression given above for ⟨N⟩.

c) Represent the term computed in part b) as a Feynman diagram, e.g., λ = , where
the two circles refer to the two field operators that were contracted. Now represent the
whole perturbation series for P (0) in terms of Feynman diagrams. Show that this series
exponentiates, so that it can be summed exactly: P (0) = e−λ.

d) Compute the probability density for the source to create one particle of momentum k⃗ and
then integrate over k⃗ to get the probability to create one particle. Perform this computation
first to O(j) and then to all orders, using the trick of part c) to sum the series.

It is useful to introduce the Feynman diagram α(x) =
x

=

∫
d4y j(y)DF (x− y).

e) Show that the probability of producing n particles is given by the Poisson distribution

P (n) =
1

n!
λne−λ .

f) Prove the following facts about the Poisson distribution:
∞∑
n=0

P (n) = 1 , ⟨N⟩ =
∞∑
n=0

nP (n) = λ .

The first identity means that the P (n)’s are properly normalized probabilities, while the
second confirms our proposal for ⟨N⟩. Compute the mean square fluctuation

〈
(N − ⟨N⟩)2

〉
.
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Hint 1: Since j(x) is real we have ȷ̃(−p) = ȷ̃(p)∗.
Hint 2: The identity operator can be written as a sum of projectors onto the vacuum state and
all n-particle states,

1 = 1vacuum + 11-particle + 12-particle + . . .

with 1vacuum = |0⟩⟨0| and

1n-particle =
1

n!

∫
d3k1
(2π)3

· · · d
3kn

(2π)3
1

2E
k⃗1
· · · 2E

k⃗n

|⃗k1 · · · k⃗n⟩⟨k⃗1 · · · k⃗n| .

The n-particle states are defined by

|⃗k1 · · · k⃗n⟩ =
√

2E
k⃗1
· · · 2E

k⃗n
a†
k⃗1
· · · a†

k⃗n
|0⟩

and satisfy

⟨k⃗1 · · · k⃗n|p⃗1 · · · p⃗n⟩ = (2π)3n2E
k⃗1
· · · 2E

k⃗n

∑
σ

δ(3)(k⃗1 − p⃗σ1) · · · δ(3)(k⃗n − p⃗σn) ,

where the sum is over all permutations of 1, . . . , n.
Hint 3: Express the n-particle states in terms of the KG-field acting on the vacuum, e.g.,

⟨k⃗| = 2E
k⃗

∫
d3x eik·x⟨0|φ+

I (x)

for the 1-particle states. Choose x0 to be larger than the time at which the source is turned off.
This allows you to pull φ+

I (x) inside the time-ordering operator.

Remark: A somewhat simpler strategy to solve this problem is to work with the ladder operators.
(However, if you did it this way, you wouldn’t get any practice with Feynman diagrams.) You
can express φI in terms of ladder operators and write −i

∫
dtHI(t) = A + B, where A and B

contain only creation and annihilation operators, respectively. The commutator of A and B is
[A,B] = λ. Since [A, [A,B]] = [B, [A,B]] = 0, the BCH formula reads

eAeB = eA+B+ 1
2
[A,B] .

This can be used to eliminate the annihilation operators from the problem, since eB|0⟩ = 1. The
result of part e) then follows relatively straightforwardly.
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