Quantum Electrodynamics

Problem Set 7 (for the exercises on June 04 and 05)

Problem 1 Gordon identity

Derive the Gordon identity,

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\frac{p^{\prime \mu}+p^{\mu}}{2 m}+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m}\right] u(p)
$$

where $q=p^{\prime}-p, \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$, and $u(p)$ satisfies $(\not p-m) u(p)=0$. This identity will be useful later in the course when we discuss the electron vertex function.

Problem 2 The time-evolution operator of the Klein-Gordon field

Let $U\left(t, t^{\prime}\right)$ with $t \geq t^{\prime}$ be an operator that satisfies the differential equation

$$
\frac{\partial U\left(t, t^{\prime}\right)}{\partial t}=-i H_{I}(t) U\left(t, t^{\prime}\right)
$$

with initial condition $U(t, t)=\mathbb{1}$. Note that $H_{I}(t)$ is an operator.
a) Show (by differentiating with respect to t) that

$$
\begin{aligned}
U\left(t, t^{\prime}\right)= & \mathbb{1}+(-i) \int_{t^{\prime}}^{t} d t_{1} H_{I}\left(t_{1}\right)+(-i)^{2} \int_{t^{\prime}}^{t} d t_{1} \int_{t^{\prime}}^{t_{1}} d t_{2} H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right) \\
& +(-i)^{3} \int_{t^{\prime}}^{t} d t_{1} \int_{t^{\prime}}^{t_{1}} d t_{2} \int_{t^{\prime}}^{t_{2}} d t_{3} H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right) H_{I}\left(t_{3}\right)+\ldots
\end{aligned}
$$

is a solution of the differential equation.
b) Show that the terms in the above solution can be rewritten in the form

$$
\int_{t^{\prime}}^{t} d t_{1} \cdots \int_{t^{\prime}}^{t_{n-1}} d t_{n} H_{I}\left(t_{1}\right) \cdots H_{I}\left(t_{n}\right)=\frac{1}{n!} \int_{t^{\prime}}^{t} d t_{1} \cdots d t_{n} T\left\{H_{I}\left(t_{1}\right) \cdots H_{I}\left(t_{n}\right)\right\}
$$

This proves the expression for U stated in class:

$$
U\left(t, t^{\prime}\right)=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int_{t^{\prime}}^{t} d t_{1} \cdots d t_{n} T\left\{H_{I}\left(t_{1}\right) \cdots H_{I}\left(t_{n}\right)\right\}=T\left\{e^{-i \int_{t^{\prime}}^{t} d t^{\prime \prime} H_{I}\left(t^{\prime \prime}\right)}\right\}
$$

c) Show that

$$
U\left(t, t^{\prime}\right)=e^{i H_{0}\left(t-t_{0}\right)} e^{-i H\left(t-t^{\prime}\right)} e^{-i H_{0}\left(t^{\prime}-t_{0}\right)}
$$

where H_{0} and $H=H_{0}+H_{\text {int }}$ are operators in the Schrödinger picture, satisfies the differential equation and the initial condition. Here, t_{0} is the reference time at which the Heisenberg and interaction pictures coincide. This expression makes it obvious that U is unitary.
d) Show that for $t_{1} \geq t_{2} \geq t_{3}$ we have

$$
\begin{aligned}
U\left(t_{1}, t_{2}\right) U\left(t_{2}, t_{3}\right) & =U\left(t_{1}, t_{3}\right) \\
U\left(t_{1}, t_{3}\right) U^{\dagger}\left(t_{2}, t_{3}\right) & =U\left(t_{1}, t_{2}\right)
\end{aligned}
$$

Problem 3 Proof of Wick's theorem

Prove Wick's theorem,

$$
T\left\{\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right\}=N\left\{\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)+\text { all possible contractions }\right\}
$$

where T and N denote time-ordering and normal-ordering, respectively.
Hint: Use induction, starting with the case of $n=2$ that was already proven in class. It suffices to consider the case $x_{1}^{0} \geq \cdots \geq x_{n}^{0}$ (why?).

