Quantum Electrodynamics

Problem Set 6 (for the exercises on May 28 and 29)

Problem 1 Time reversal

a) We have seen in class that T reverses three-momentum and spin, so we need to learn how to deal with spin flips. Let $\xi^{s}(s=1,2)$ be a two-component spinor. We claim that the flipped spinor is given by

$$
\xi^{-s}:=-i \sigma^{2}\left(\xi^{s}\right)^{*}
$$

To prove this, show that $\vec{\sigma} \sigma^{2}=\sigma^{2}\left(-\vec{\sigma}^{*}\right)$ and use this identity to show that, if a twocomponent spinor ξ satisfies $(\hat{n} \cdot \vec{\sigma}) \xi=+\xi$ for some axis \hat{n}, then $(\hat{n} \cdot \vec{\sigma})\left(-i \sigma^{2} \xi^{*}\right)=-\left(-i \sigma^{2} \xi^{*}\right)$.
b) To deal with momentum reversal, define $\tilde{p}=\left(p^{0},-\vec{p}\right)$ and show that

$$
\sqrt{\tilde{p} \cdot \sigma} \sigma^{2}=\sigma^{2} \sqrt{p \cdot \sigma^{*}}, \quad \sqrt{\tilde{p} \cdot \bar{\sigma}} \sigma^{2}=\sigma^{2} \sqrt{p \cdot \bar{\sigma}^{*}}
$$

Hint: $\sqrt{p \cdot \sigma}$ is a 2×2 matrix, so it can be written as a linear combination of $\mathbb{1}_{2}$ and the three Pauli matrices, $\sqrt{p \cdot \sigma}=\alpha_{0} \mathbb{1}_{2}+\alpha_{i} \sigma^{i}$. The coefficients α_{μ} were given in Sec. 3.3 of the lecture.
c) In Problem 5.1 explicit expressions for u and v were given,

$$
\begin{equation*}
u^{s}(p)=\binom{\sqrt{p \cdot \sigma} \xi^{s}}{\sqrt{p \cdot \bar{\sigma}} \xi^{s}} \quad \text { and } \quad v^{s}(p)=\binom{\sqrt{p \cdot \sigma} \eta^{s}}{-\sqrt{p \cdot \bar{\sigma}} \eta^{s}} \tag{1}
\end{equation*}
$$

with $s=1,2, \xi^{r \dagger} \xi^{s}=\delta^{r s}$ and $\eta^{r \dagger} \eta^{s}=\delta^{r s}$. Using these expressions, show that the Dirac spinors with reversed momentum and spin are given by

$$
u^{-s}(\tilde{p})=-\gamma^{1} \gamma^{3}\left[u^{s}(p)\right]^{*}, \quad v^{-s}(\tilde{p})=-\gamma^{1} \gamma^{3}\left[v^{s}(p)\right]^{*}
$$

d) If in part a) we choose $\xi^{1}=\binom{1}{0}$ and $\xi^{2}=\binom{0}{1}$, then $\xi^{-1}=\xi^{2}$ and $\xi^{-2}=-\xi^{1}$ (this does not result in any loss of generality since the axis \hat{n} is arbitrary). In analogy, we define

$$
a_{\vec{p}}^{-1}=a_{\vec{p}}^{2}, \quad a_{\vec{p}}^{-2}=-a_{\vec{p}}^{1}
$$

and similarly for $b_{\vec{p}}^{s}$. The action of T on the fermion annihilation operators is defined by

$$
T a_{\vec{p}}^{s} T^{-1}=a_{-\vec{p}}^{-s}, \quad T b_{\vec{p}}^{s} T^{-1}=b_{-\vec{p}}^{-s}
$$

i.e., momentum and spin are reversed as required. Show that the Dirac field and the various field bilinears transform under T as follows,

$$
\begin{aligned}
T \psi(t, \vec{x}) T^{-1} & =\gamma^{1} \gamma^{3} \psi(-t, \vec{x}) \\
T \bar{\psi}(t, \vec{x}) T^{-1} & =\bar{\psi}(-t, \vec{x})\left(-\gamma^{1} \gamma^{3}\right) \\
T \bar{\psi} \psi T^{-1} & \rightarrow \bar{\psi} \psi \\
T i \bar{\psi} \gamma^{5} \psi T^{-1} & \rightarrow-i \bar{\psi} \gamma^{5} \psi
\end{aligned}
$$

$$
\begin{aligned}
& T \bar{\psi} \gamma^{\mu} \psi T^{-1} \rightarrow \begin{cases}+\bar{\psi} \gamma^{\mu} \psi & \text { for } \mu=0 \\
-\bar{\psi} \gamma^{\mu} \psi & \text { for } \mu=1,2,3\end{cases} \\
& T \bar{\psi} \gamma^{\mu} \gamma^{5} \psi T^{-1} \rightarrow \begin{cases}+\bar{\psi} \gamma^{\mu} \gamma^{5} \psi & \text { for } \mu=0 \\
-\bar{\psi} \gamma^{\mu} \gamma^{5} \psi & \text { for } \mu=1,2,3\end{cases} \\
& T i \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi T^{-1} \rightarrow \begin{cases}-i \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi & \text { for } \mu \nu=i j \\
+i \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi & \text { for } \mu \nu=0 i \text { or } i 0\end{cases}
\end{aligned}
$$

Hint: Recall that T is an anti-unitary operator that involves complex conjugation.

Problem 2 Charge conjugation

In Eq. (1) the choice of ξ and η is arbitrary, subject to the constraints $\xi^{r \dagger} \xi^{s}=\delta^{r s}$ and $\eta^{r \dagger} \eta^{s}=\delta^{r s}$. You have shown in Problem 4.4 that for antifermions the spin is reversed with respect to the fermions. Therefore it is sensible to choose $\eta^{s}=\xi^{-s}$ with ξ^{-s} defined in Problem 1a), i.e.,

$$
v^{s}(p)=\binom{\sqrt{p \cdot \sigma} \xi^{-s}}{-\sqrt{p \cdot \bar{\sigma}} \xi^{-s}} .
$$

a) Using this convention and the results of Problem 1b), show that

$$
u^{s}(p)=-i \gamma^{2}\left[v^{s}(p)\right]^{*}, \quad v^{s}(p)=-i \gamma^{2}\left[u^{s}(p)\right]^{*}
$$

b) Using

$$
C a_{\vec{p}}^{s} C^{-1}=b_{\vec{p}}^{s}, \quad C b_{\vec{p}}^{s} C^{-1}=a_{\vec{p}}^{s},
$$

show that the Dirac field and the various field bilinears transform under C as follows,

$$
\begin{aligned}
C \psi C^{-1} & =-i \gamma^{2} \psi^{*}=-i\left(\bar{\psi} \gamma^{0} \gamma^{2}\right)^{T} \\
C \bar{\psi} C^{-1} & =-i\left(\gamma^{0} \gamma^{2} \psi\right)^{T} \\
C \bar{\psi} \psi C^{-1} & =\bar{\psi} \psi \\
C i \bar{\psi} \gamma^{5} \psi C^{-1} & =i \bar{\psi} \gamma^{5} \psi \\
C \bar{\psi} \gamma^{\mu} \psi C^{-1} & =-\bar{\psi} \gamma^{\mu} \psi \\
C \bar{\psi} \gamma^{\mu} \gamma^{5} \psi C^{-1} & =\bar{\psi} \gamma^{\mu} \gamma^{5} \psi \\
C i \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi C^{-1} & =-i \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi
\end{aligned}
$$

Problem 3 The free electromagnetic field

a) Derive the Hamiltonian of the free electromagnetic field,

$$
H=\int d^{3} x\left[\pi^{\mu}(x) \dot{A}_{\mu}(x)-\mathcal{L}\right]=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=0}^{3} \zeta_{r} E_{\vec{p}} a_{\vec{p}}^{r \dagger} a_{\vec{p}}^{r},
$$

using $\mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} A_{\nu}\right)\left(\partial^{\mu} A^{\nu}\right)$. You can either use the expansion of the field in terms of ladder operators or find a shortcut by comparing the Lagrangian to that of the Klein-Gordon field.
b) Using the special choice for the polarization vectors $\varepsilon_{r}(p)$ given at the end of Sec. 4.1 of the lecture, show that the Gupta-Bleuler condition, $\partial_{\mu} A^{\mu+}(x)|\Psi\rangle=0$, leads to the condition

$$
\left(a_{\vec{p}}^{3}-a_{\vec{p}}^{0}\right)|\Psi\rangle=0 \quad \text { for all } \vec{p} .
$$

c) Using the expression for H from part a), show that the condition you derived in part b) implies that only transverse photons contribute to the energy, i.e.,

$$
\langle\Psi| H|\Psi\rangle=\langle\Psi| \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=1}^{2} E_{\vec{p}} a_{\vec{p}}^{r \dagger} a_{\vec{p}}^{r}|\Psi\rangle .
$$

