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Problem 1 Spinor representation of the Lorentz algebra

Assume that we have four n× n matrices γµ satisfying the anticommutation relations

{γµ, γν} ≡ γµγν + γνγµ = 2gµν1n .

We only know these relations but not the explicit form of the γµ. Show that the n× n matrices

Sµν =
i

4
[γµ, γν ]

satisfy the commutation relations of the Lorentz algebra, i.e.,

[Sµν , Sρσ] = i(gνρSµσ − gµρSνσ − gνσSµρ + gµσSνρ) .

Hint: First prove [Sµν , γρ] = i (γµgνρ − γνgµρ).

Problem 2 A property of the γ-matrices

Show that the γ-matrices satisfy the relation

Λ−1
1
2

γµΛ 1
2
= Λµ

νγ
ν ,

where

Λ 1
2
= exp

(
− i

2
ωµνS

µν

)
with Sµν =

i

4
[γµ, γν ] ,

Λ = exp
(
− i

2
ωµνJ µν

)
with (J µν)αβ = i(δµαδ

ν
β − δµβδ

ν
α) .

Hint: Substitute ωµν → αωµν and show that the matrices γµ(α) = Λ−1
1/2(α)γ

µΛ1/2(α) and
γ̃µ(α) = Λµ

ν(α)γ
ν satisfy the same differential equation, i.e., ∂αγµ(α) = ∂αγ̃

µ(α). The result
from the hint in Problem 1 may also be useful.

Problem 3 Transformation properties of ψ̄ψ and ψ̄γµψ

a) We know that ψ transforms like ψ → Λ 1
2
ψ. Show that ψ̄ ≡ ψ†γ0 transforms like ψ̄ → ψ̄Λ−1

1
2

.
Therefore ψ̄ψ is a Lorentz scalar.
Hint: Show that (Sµν)†γ0 = γ0Sµν .

b) Show that ψ̄γµψ is a Lorentz vector.
Hint: Use the property of the γ-matrices you proved in Problem 2.
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Problem 4 Orbital angular momentum and spin

In this problem, we will construct the angular momentum operator and show that the particles
created by as†p⃗ and bs†p⃗ have spin 1

2 .

a) Since the Dirac Lagrangian is invariant under Lorentz transformations, it is invariant under
rotations. Consider an infinitesimal rotation by an angle θ about the z-axis, i.e., ω12 =
−ω21 = θ, so that

Λ 1
2
≈ 1− i

2
θΣ3 ,

where Σ3 = diag(σ3, σ3). Compute the change

δψ = ψ′(x)− ψ(x) = Λ 1
2
ψ(Λ−1x)− ψ(x)

in the field at the point x and show that the time-component of the conserved Noether
current is

j0 = −iψ̄γ0(x∂y − y∂x +
i

2
Σ3)ψ .

Doing similar calculations for rotations about the x- and y-axes, one finds the angular
momentum operator

J⃗ =

∫
d3x ψ†

{
x⃗× (−i∇⃗) +

1

2
Σ⃗

}
ψ .

b) Express ψ and ψ† in terms of ladder operators to show that, at t = 0,

Jz =

∫
d3x

∫
d3p

(2π)3
d3p′

(2π)3
1√

2Ep⃗2Ep⃗ ′
ei(p⃗−p⃗ ′)·x⃗

×
∑
rr′

(
ar

′†
p⃗ ′ u

r′†(p⃗ ′) + br
′

−p⃗ ′vr
′†(−p⃗ ′)

)(
xp2 − yp1 +

1

2
Σ3

)(
arp⃗u

r(p⃗) + br†−p⃗v
r(−p⃗)

)
.

In the following we consider particles at rest. We want to show that as†0 |0⟩ is an eigenstate of
Jz with eigenvalue ±1

2 . Since Jz must annihilate the vacuum, we have Jzas†0 |0⟩ = [Jz, a
s†
0 ]|0⟩.

Show that the only nonzero term in the latter expression leads to

Jza
s†
0 |0⟩ = 1

2m

∑
r

(
ur†(0)

Σ3

2
us(0)

)
ar†0 |0⟩ =

∑
r

(
ξr†

σ3

2
ξs
)
ar†0 |0⟩ ,

where u(0) means u(p = (m, 0⃗)). Choose the spinors ξr to be eigenstates of σ3 to show that
we indeed have

Jza
s†
0 |0⟩ = ±1

2
as†0 |0⟩ .

c) Show that for antifermions the sign is reversed, i.e.,

Jzb
s†
0 |0⟩ = ∓1

2
bs†0 |0⟩ .

d) (optional) To justify the trick used in part b), show explicitly that Jz annihilates the vacuum.
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