Quantum Electrodynamics

Problem Set 4 (for the exercises on May 14 and 15)

Problem 1 Spinor representation of the Lorentz algebra

Assume that we have four $n \times n$ matrices γ^{μ} satisfying the anticommutation relations

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \equiv \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{1}_{n}
$$

We only know these relations but not the explicit form of the γ^{μ}. Show that the $n \times n$ matrices

$$
S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

satisfy the commutation relations of the Lorentz algebra, i.e.,

$$
\left[S^{\mu \nu}, S^{\rho \sigma}\right]=i\left(g^{\nu \rho} S^{\mu \sigma}-g^{\mu \rho} S^{\nu \sigma}-g^{\nu \sigma} S^{\mu \rho}+g^{\mu \sigma} S^{\nu \rho}\right)
$$

Hint: First prove $\left[S^{\mu \nu}, \gamma^{\rho}\right]=i\left(\gamma^{\mu} g^{\nu \rho}-\gamma^{\nu} g^{\mu \rho}\right)$.

Problem 2 A property of the γ-matrices

Show that the γ-matrices satisfy the relation

$$
\Lambda_{\frac{1}{2}}^{-1} \gamma^{\mu} \Lambda_{\frac{1}{2}}=\Lambda_{\nu}^{\mu} \gamma^{\nu}
$$

where

$$
\begin{aligned}
\Lambda_{\frac{1}{2}} & =\exp \left(-\frac{i}{2} \omega_{\mu \nu} S^{\mu \nu}\right) \quad \text { with } \quad S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
\Lambda & =\exp \left(-\frac{i}{2} \omega_{\mu \nu} \mathcal{J}^{\mu \nu}\right) \quad \text { with } \quad\left(\mathcal{J}^{\mu \nu}\right)_{\alpha \beta}=i\left(\delta_{\alpha}^{\mu} \delta_{\beta}^{\nu}-\delta_{\beta}^{\mu} \delta_{\alpha}^{\nu}\right)
\end{aligned}
$$

Hint: Substitute $\omega_{\mu \nu} \rightarrow \alpha \omega_{\mu \nu}$ and show that the matrices $\gamma^{\mu}(\alpha)=\Lambda_{1 / 2}^{-1}(\alpha) \gamma^{\mu} \Lambda_{1 / 2}(\alpha)$ and $\tilde{\gamma}^{\mu}(\alpha)=\Lambda^{\mu}{ }_{\nu}(\alpha) \gamma^{\nu}$ satisfy the same differential equation, i.e., $\partial_{\alpha} \gamma^{\mu}(\alpha)=\partial_{\alpha} \tilde{\gamma}^{\mu}(\alpha)$. The result from the hint in Problem 1 may also be useful.

Problem 3 Transformation properties of $\bar{\psi} \psi$ and $\bar{\psi} \gamma^{\mu} \psi$

a) We know that ψ transforms like $\psi \rightarrow \Lambda_{\frac{1}{2}} \psi$. Show that $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$ transforms like $\bar{\psi} \rightarrow \bar{\psi} \Lambda_{\frac{1}{2}}^{-1}$. Therefore $\bar{\psi} \psi$ is a Lorentz scalar.
Hint: Show that $\left(S^{\mu \nu}\right)^{\dagger} \gamma^{0}=\gamma^{0} S^{\mu \nu}$.
b) Show that $\bar{\psi} \gamma^{\mu} \psi$ is a Lorentz vector.

Hint: Use the property of the γ-matrices you proved in Problem 2.

Problem 4 Orbital angular momentum and spin

In this problem, we will construct the angular momentum operator and show that the particles created by $a_{\vec{p}}^{s \dagger}$ and $b_{\vec{p}}^{s \dagger}$ have spin $\frac{1}{2}$.
a) Since the Dirac Lagrangian is invariant under Lorentz transformations, it is invariant under rotations. Consider an infinitesimal rotation by an angle θ about the z-axis, i.e., $\omega_{12}=$ $-\omega_{21}=\theta$, so that

$$
\Lambda_{\frac{1}{2}} \approx \mathbb{1}-\frac{i}{2} \theta \Sigma^{3}
$$

where $\Sigma^{3}=\operatorname{diag}\left(\sigma^{3}, \sigma^{3}\right)$. Compute the change

$$
\delta \psi=\psi^{\prime}(x)-\psi(x)=\Lambda_{\frac{1}{2}} \psi\left(\Lambda^{-1} x\right)-\psi(x)
$$

in the field at the point x and show that the time-component of the conserved Noether current is

$$
j^{0}=-i \bar{\psi} \gamma^{0}\left(x \partial_{y}-y \partial_{x}+\frac{i}{2} \Sigma^{3}\right) \psi
$$

Doing similar calculations for rotations about the x - and y-axes, one finds the angular momentum operator

$$
\vec{J}=\int d^{3} x \psi^{\dagger}\left\{\vec{x} \times(-i \vec{\nabla})+\frac{1}{2} \vec{\Sigma}\right\} \psi
$$

b) Express ψ and ψ^{\dagger} in terms of ladder operators to show that, at $t=0$,

$$
\begin{aligned}
J_{z}= & \int d^{3} x \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}} 2 E_{\vec{p}^{\prime}}}} e^{i\left(\vec{p}-\vec{p}^{\prime}\right) \cdot \vec{x}} \\
& \times \sum_{r r^{\prime}}\left(a_{\vec{p}^{\prime} \dagger}^{r^{\prime} \dagger} u^{r^{\prime} \dagger}\left(\vec{p}^{\prime}\right)+b_{-\vec{p}^{\prime}}^{r^{\prime}} v^{r^{\prime} \dagger}\left(-\vec{p}^{\prime}\right)\right)\left(x p^{2}-y p^{1}+\frac{1}{2} \Sigma^{3}\right)\left(a_{\vec{p}}^{r} u^{r}(\vec{p})+b_{-\vec{p}}^{r \dagger} v^{r}(-\vec{p})\right) .
\end{aligned}
$$

In the following we consider particles at rest. We want to show that $a_{0}^{s \dagger}|0\rangle$ is an eigenstate of J_{z} with eigenvalue $\pm \frac{1}{2}$. Since J_{z} must annihilate the vacuum, we have $J_{z} a_{0}^{s \dagger}|0\rangle=\left[J_{z}, a_{0}^{s \dagger}\right]|0\rangle$. Show that the only nonzero term in the latter expression leads to

$$
J_{z} a_{0}^{s \dagger}|0\rangle=\frac{1}{2 m} \sum_{r}\left(u^{r \dagger}(0) \frac{\Sigma^{3}}{2} u^{s}(0)\right) a_{0}^{r \dagger}|0\rangle=\sum_{r}\left(\xi^{r \dagger} \frac{\sigma^{3}}{2} \xi^{s}\right) a_{0}^{r \dagger}|0\rangle
$$

where $u(0)$ means $u(p=(m, \overrightarrow{0}))$. Choose the spinors ξ^{r} to be eigenstates of σ^{3} to show that we indeed have

$$
J_{z} a_{0}^{s \dagger}|0\rangle= \pm \frac{1}{2} a_{0}^{s \dagger}|0\rangle
$$

c) Show that for antifermions the sign is reversed, i.e.,

$$
J_{z} b_{0}^{s \dagger}|0\rangle=\mp \frac{1}{2} b_{0}^{s \dagger}|0\rangle .
$$

d) (optional) To justify the trick used in part b), show explicitly that J_{z} annihilates the vacuum.

