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Problem 1 The complex scalar field

Consider the field theory of a complex-valued scalar field obeying the Klein-Gordon equation.
The action of this theory is

S =

∫
d4x (∂µφ

∗∂µφ−m2φ∗φ) .

It is easiest to analyze this theory by considering φ(x) and φ∗(x), rather than the real and
imaginary parts of φ(x), as the basic dynamical variables.
a) Find the momenta conjugate to φ(x) and φ∗(x). Quantize the fields by postulating canonical

commutation relations. Show that the Hamiltonian is

H =

∫
d3x (π†π + ∇⃗φ† · ∇⃗φ+m2φ†φ) .

Compute the Heisenberg equation of motion for φ(x) and show that it is indeed the Klein-
Gordon equation.

b) Diagonalize H by introducing creation and annihilation operators. Show that the theory
contains two sets of particles of mass m.
Hint: Since the operator φ is no longer Hermitian, its Fourier transform contains two
independent operators ap⃗ and b†p⃗ (instead of ap⃗ and a†p⃗ in the Hermitian case). It may
be convenient to introduce Hermitian field operators (φ + φ†)/

√
2 and (φ − φ†)/

√
2i, and

similarly for π and π†.

c) Show that the Lagrangian is invariant under a global change of the phase of φ (i.e., φ(x) →
eiαφ(x)) and that the conserved charge corresponding to this symmetry transformation is

Q = i

∫
d3x (φ†π† − φπ) .

Rewrite Q in terms of creation and annihilation operators and evaluate the charge of the
particles of each type.

Problem 2 Green’s functions of the Klein-Gordon operator

a) Show that the function

DR(x− y) = θ(x0 − y0)⟨0|[φ(x), φ(y)]|0⟩

satisfies the equation

(∂2 +m2)DR(x− y) = −iδ(4)(x− y)

and is therefore a (retarded) Green’s function of the Klein-Gordon operator ∂2 +m2.

b) Show that the Feynman propagator

DF (x− y) = ⟨0|Tφ(x)φ(y)|0⟩

is also a Green’s function of the Klein-Gordon operator.
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Problem 3 Particle creation by a classical source

Consider a real Klein-Gordon field coupled to an external, classical source j. The Lagrangian is
given by

L =
1

2
∂µφ∂µφ− 1

2
m2φ2 + j(x)φ(x) ,

where j(x) is a known real function that is nonzero only for a finite time interval.

a) Show that the equation of motion is

(∂2 +m2)φ(x) = j(x) .

b) Before j(x) is turned on, φ(x) has the form

φ0(x) =

∫
d3p

(2π)3
1√
2Ep⃗

(
ap⃗ e

−ip·x + a†p⃗ e
ip·x
)∣∣∣

p0=Ep⃗

.

With a source, we can construct φ(x) using the retarded Green’s function:

φ(x) = φ0(x) + i

∫
d4y DR(x− y)j(y) .

Show that after j has acted (i.e., for times large enough so that j is zero again), we have

φ(x) =

∫
d3p

(2π)3
1√
2Ep⃗

{(
ap⃗ +

i√
2Ep⃗

j̃(p)

)
e−ip·x + h.c.

}
,

where

j̃(p) =

∫
d4y eip·yj(y)

is the Fourier transform of j for 4-momenta p such that p2 = m2.

c) Show that after j has acted, the Hamiltonian is given by

H =

∫
d3p

(2π)3
Ep⃗

(
a†p⃗ −

i√
2Ep⃗

j̃∗(p)

)(
ap⃗ +

i√
2Ep⃗

j̃(p)

)

and that the energy of the system after the source has been turned off is

⟨0|H|0⟩ =
∫

d3p

(2π)3
1

2
|j̃(p)|2 =

∫
d3p

(2π)3
Ep⃗

|j̃(p)|2

2Ep⃗
,

where |0⟩ is the ground state of the free theory. These results show that |j̃(p)|2/2Ep⃗ is the
probability density for creating a particle in the mode p. The total number of particles
created is then

N =

∫
dN =

∫
d3p

(2π)3
|j̃(p)|2

2Ep⃗
.

Note that particles are created only by those Fourier components of j that satisfy the on-
mass-shell condition p2 = m2.
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