Quantum Electrodynamics

Problem Set 3 (for the exercises on May 7 and 8)

Problem 1 The complex scalar field

Consider the field theory of a complex-valued scalar field obeying the Klein-Gordon equation. The action of this theory is

$$
S=\int d^{4} x\left(\partial_{\mu} \varphi^{*} \partial^{\mu} \varphi-m^{2} \varphi^{*} \varphi\right)
$$

It is easiest to analyze this theory by considering $\varphi(x)$ and $\varphi^{*}(x)$, rather than the real and imaginary parts of $\varphi(x)$, as the basic dynamical variables.
a) Find the momenta conjugate to $\varphi(x)$ and $\varphi^{*}(x)$. Quantize the fields by postulating canonical commutation relations. Show that the Hamiltonian is

$$
H=\int d^{3} x\left(\pi^{\dagger} \pi+\vec{\nabla} \varphi^{\dagger} \cdot \vec{\nabla} \varphi+m^{2} \varphi^{\dagger} \varphi\right)
$$

Compute the Heisenberg equation of motion for $\varphi(x)$ and show that it is indeed the KleinGordon equation.
b) Diagonalize H by introducing creation and annihilation operators. Show that the theory contains two sets of particles of mass m.
Hint: Since the operator φ is no longer Hermitian, its Fourier transform contains two independent operators $a_{\vec{p}}$ and $b_{\vec{p}}^{\dagger}$ (instead of $a_{\vec{p}}$ and $a_{\vec{p}}^{\dagger}$ in the Hermitian case). It may be convenient to introduce Hermitian field operators $\left(\varphi+\varphi^{\dagger}\right) / \sqrt{2}$ and $\left(\varphi-\varphi^{\dagger}\right) / \sqrt{2} i$, and similarly for π and π^{\dagger}.
c) Show that the Lagrangian is invariant under a global change of the phase of φ (i.e., $\varphi(x) \rightarrow$ $\left.e^{i \alpha} \varphi(x)\right)$ and that the conserved charge corresponding to this symmetry transformation is

$$
Q=i \int d^{3} x\left(\varphi^{\dagger} \pi^{\dagger}-\varphi \pi\right)
$$

Rewrite Q in terms of creation and annihilation operators and evaluate the charge of the particles of each type.

Problem 2 Green's functions of the Klein-Gordon operator

a) Show that the function

$$
D_{R}(x-y)=\theta\left(x^{0}-y^{0}\right)\langle 0|[\varphi(x), \varphi(y)]|0\rangle
$$

satisfies the equation

$$
\left(\partial^{2}+m^{2}\right) D_{R}(x-y)=-i \delta^{(4)}(x-y)
$$

and is therefore a (retarded) Green's function of the Klein-Gordon operator $\partial^{2}+m^{2}$.
b) Show that the Feynman propagator

$$
D_{F}(x-y)=\langle 0| T \varphi(x) \varphi(y)|0\rangle
$$

is also a Green's function of the Klein-Gordon operator.

Problem 3 Particle creation by a classical source

Consider a real Klein-Gordon field coupled to an external, classical source j. The Lagrangian is given by

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2}+j(x) \varphi(x),
$$

where $j(x)$ is a known real function that is nonzero only for a finite time interval.
a) Show that the equation of motion is

$$
\left(\partial^{2}+m^{2}\right) \varphi(x)=j(x) .
$$

b) Before $j(x)$ is turned on, $\varphi(x)$ has the form

$$
\varphi_{0}(x)=\left.\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left(a_{\vec{p}} e^{-i p \cdot x}+a_{\vec{p}}^{\dagger} e^{i p \cdot x}\right)\right|_{p^{0}=E_{\vec{p}}} .
$$

With a source, we can construct $\varphi(x)$ using the retarded Green's function:

$$
\varphi(x)=\varphi_{0}(x)+i \int d^{4} y D_{R}(x-y) j(y) .
$$

Show that after j has acted (i.e., for times large enough so that j is zero again), we have

$$
\varphi(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left\{\left(a_{\vec{p}}+\frac{i}{\sqrt{2 E_{\vec{p}}}} \tilde{j}(p)\right) e^{-i p \cdot x}+\text { h.c. }\right\},
$$

where

$$
\tilde{j}(p)=\int d^{4} y e^{i p \cdot y} j(y)
$$

is the Fourier transform of j for 4 -momenta p such that $p^{2}=m^{2}$.
c) Show that after j has acted, the Hamiltonian is given by

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} E_{\vec{p}}\left(a_{\vec{p}}^{\dagger}-\frac{i}{\sqrt{2 E_{\vec{p}}}} \tilde{j}^{*}(p)\right)\left(a_{\vec{p}}+\frac{i}{\sqrt{2 E_{\vec{p}}}} \tilde{j}(p)\right)
$$

and that the energy of the system after the source has been turned off is

$$
\langle 0| H|0\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2}|\tilde{j}(p)|^{2}=\int \frac{d^{3} p}{(2 \pi)^{3}} E_{\vec{p}} \frac{|\tilde{j}(p)|^{2}}{2 E_{\vec{p}}},
$$

where $|0\rangle$ is the ground state of the free theory. These results show that $|\tilde{j}(p)|^{2} / 2 E_{\vec{p}}$ is the probability density for creating a particle in the mode p. The total number of particles created is then

$$
N=\int d N=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{|\tilde{j}(p)|^{2}}{2 E_{\vec{p}}} .
$$

Note that particles are created only by those Fourier components of j that satisfy the on-mass-shell condition $p^{2}=m^{2}$.

