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Quantum Electrodynamics

Problem Set 1 (for the exercises on April 23 and 24)

Problem 1 Natural units

a) Recall that we are using Heaviside-Lorentz units throughout. Show that in natural units
(h = ¢ = 1) the Compton wavelength of an electron is m !, the Bohr radius of the hydrogen
atom is (am)~!, and the velocity of an electron in its lowest Bohr orbit is simply a. Here,
m = memp/(me + my) is the reduced mass.

b) Cross sections (which we will get to know later in the course) are often expressed in milli-
barns, where 1 mb = 1072 b = 10727 ¢cm?. Show that 1 GeV~2 = 0.389 mb.

Problem 2 Classical electrodynamics

Classical electrodynamics follows from the action
1
S = / d*z L with L= = P = T A,

where F,, = 8,4, — d,A, and J* = (p, J).

a) Derive Maxwell’s equations as the Euler-Lagrange equations of this action, treating the
components A, (x) as the dynamical variables. Write the equations in standard form by
identifying F* = —F% and ¢9*B*F = —F¥,

b) Set J* =0 and construct the energy-momentum tensor 7#" for this theory, defined as
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Note that the usual procedure does not result in a symmetric tensor. To remedy that, we
can add to TH" a term of the form 9yK*¥, where K ¥ is antisymmetric in its first two
indices. Such an object is automatically divergenceless, so

TH =T + 9\ KM

is an equally good energy-momentum tensor with the same globally conserved energy and
momentum. Show that this construction, with
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leads to an energy-momentum tensor T that is symmetric and yields the standard formulas
for the electromagnetic energy and momentum densities,
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where € = T% and Sy = TOk,



Problem 3 Lack of causality in quantum mechanics

In quantum mechanics, the amplitude for a free particle to propagate from Zy to Z is given by

a)

U(t) = (Zle™""|Z0).

In nonrelativistic quantum mechanics, we have E = 52/2m. Show, by inserting a complete
set of momentum eigenstates and performing a Gaussian integral, that

m \3/2 ;.2

U(t) = ( : ) imr /2t’
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where r = | — Zy|. Note that U(t) is nonzero for all r and ¢. This means that the particle

can propagate between any two points in an arbitrarily short time.

In a relativistic theory, the conclusion from part a) would signal a violation of causality.
Perhaps using the relativistic expression E = 4/|p]? + m? solves this problem? Show that
in this case we obtain

1 o0 o/
U(t) = / dpp sin(pr) e VP*Hm?
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(Bonus) The integral in part b) could be evaluated explicitly in terms of Bessel functions
(Gradshteyn & Ryzhik, 5th ed., #3.914). We will not follow this route but instead compute
the asymptotic form of U(t) for 2 >> 2, which is well outside the light cone. Using the
method of stationary phase, show that in this case

U(t) ~ eV

(up to a rational function of r and t). Thus, U(¢) is small but nonzero outside the light
cone, and therefore causality is still violated.

Note: If you don’t know the method of stationary phase (a.k.a. saddle-point approximation
or method of steepest descent), look it up in a book or google it. We will also discuss it in
the exercises.
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