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Quantum Electrodynamics
Problem Set 1 (for the exercises on April 23 and 24)

Problem 1 Natural units

a) Recall that we are using Heaviside-Lorentz units throughout. Show that in natural units
(h̄ = c = 1) the Compton wavelength of an electron is m−1

e , the Bohr radius of the hydrogen
atom is (αm)−1, and the velocity of an electron in its lowest Bohr orbit is simply α. Here,
m = memp/(me +mp) is the reduced mass.

b) Cross sections (which we will get to know later in the course) are often expressed in milli-
barns, where 1 mb = 10−3 b = 10−27 cm2. Show that 1 GeV−2 = 0.389 mb.

Problem 2 Classical electrodynamics

Classical electrodynamics follows from the action

S =

∫
d4xL with L = −1

4
FµνF

µν − JµAµ ,

where Fµν = ∂µAν − ∂νAµ and Jµ = (ρ, J⃗).

a) Derive Maxwell’s equations as the Euler-Lagrange equations of this action, treating the
components Aν(x) as the dynamical variables. Write the equations in standard form by
identifying Ei = −F 0i and εijkBk = −F ij .

b) Set Jµ = 0 and construct the energy-momentum tensor Tµν for this theory, defined as

Tµν =
∂L

∂(∂µAλ)
∂νAλ − Lgµν .

Note that the usual procedure does not result in a symmetric tensor. To remedy that, we
can add to Tµν a term of the form ∂λK

λµν , where Kλµν is antisymmetric in its first two
indices. Such an object is automatically divergenceless, so

T̂µν = Tµν + ∂λK
λµν

is an equally good energy-momentum tensor with the same globally conserved energy and
momentum. Show that this construction, with

Kλµν = FµλAν ,

leads to an energy-momentum tensor T̂ that is symmetric and yields the standard formulas
for the electromagnetic energy and momentum densities,

E =
1

2
(E2 +B2) and S⃗ = E⃗ × B⃗ ,

where E = T̂ 00 and Sk = T̂ 0k.
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Problem 3 Lack of causality in quantum mechanics

In quantum mechanics, the amplitude for a free particle to propagate from x⃗0 to x⃗ is given by

U(t) = ⟨x⃗|e−iHt|x⃗0⟩ .

a) In nonrelativistic quantum mechanics, we have E = p⃗ 2/2m. Show, by inserting a complete
set of momentum eigenstates and performing a Gaussian integral, that

U(t) =
( m

2πit

)3/2
eimr2/2t ,

where r = |x⃗− x⃗0|. Note that U(t) is nonzero for all r and t. This means that the particle
can propagate between any two points in an arbitrarily short time.

b) In a relativistic theory, the conclusion from part a) would signal a violation of causality.
Perhaps using the relativistic expression E =

√
|p⃗|2 +m2 solves this problem? Show that

in this case we obtain

U(t) =
1

2π2r

∫ ∞

0
dp p sin(pr) e−it

√
p2+m2

.

c) (Bonus) The integral in part b) could be evaluated explicitly in terms of Bessel functions
(Gradshteyn & Ryzhik, 5th ed., #3.914). We will not follow this route but instead compute
the asymptotic form of U(t) for r2 ≫ t2, which is well outside the light cone. Using the
method of stationary phase, show that in this case

U(t) ∼ e−m
√
r2−t2

(up to a rational function of r and t). Thus, U(t) is small but nonzero outside the light
cone, and therefore causality is still violated.
Note: If you don’t know the method of stationary phase (a.k.a. saddle-point approximation
or method of steepest descent), look it up in a book or google it. We will also discuss it in
the exercises.
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