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1 Berry’s Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [12P]

Let H(R(t)) be the Hamiltonian of a system with an external time-dependent parameter R(t) ∈ R3. R(t) is
changed adiabatically . Given further the eigenstates

H(R(t)) |n,R(t)〉 = En(R(t)) |n,R(t)〉 (1)

we have seen in the lecture that the corresponding Berry’s phase is given by

γn(C) = i

∫
C

dR · 〈n,R|∇R|n,R〉 , (2)

for a closed loop C in the parameter space where R is living. In the following we are going to show that this
geometric phase can be interpreted as a surface integral of a vector Vn(R) penetrating through the surface
S(C) surrounded by C.

(a) Show that

γn(C) = −
∫∫

S(C)

dS ·Vn(R) , (3)

with

Vn(R) = Im
∑
n6=m

〈n,R|∇RH(R)|m,R〉 × 〈m,R|∇RH(R)|n,R〉
(Em(R)− En(R))2

. (4)

(b) Assume a spin of magnitude S in a time-dependent magnetic field B(t). Further assume that the spin
follows the magnetic field adiabatically while B(t) slowly changes its direction with t. The corresponding
Hamiltonian is given by H(B) = −(gµ/~)S ·B. Show that the Berry’s phase is given by

γm(C) = −m
∫∫

S(C)

dSB ·
B

B3
= −mΩ(C) , (5)

where B(t) describes a closed path C and m the magnetic quantum number. Explain what Ω(C) is.
Hint: Take the z-axis of the spin space to be in the direction of the instantaneous magnetic field.

(c) How does Vλ(R) (with λ the according eigenvalue quantum number) look like for a generic two-level
system given by

H(R) = H(X,Y, Z) =
1

2

(
Z X − iY

X + iY −Z

)
? (6)

Thus, what is the geometric factor for the level crossing in this system?



2 Gauge Invariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [12P]

(a) Let a particle be in a potential V (x). Further, let ψ(x, t) be the solution of the Schrödinger equation
describing the motion of this particle. We apply the gauge transformation

ψ(x, t)→ ψ′(x, t) = eiαψ(x, t) with the constant α ∈ R . (7)

Obviously, this global gauge transformation does not change the Schrödinger equation, ψ′ is still a solution.
The situation changes under a local gauge transformation,

ψ(x, t)→ ψ′(x, t) = eiΛ(x,t)ψ(x, t) . (8)

Assuming that ψ′(x, t) is a solution, show that the corresponding transformed equation of motion for
ψ(x, t) is not the Schrödinger equation anymore. Show that to make the Schrödinger equation locally
gauge invariant in case of a general local gauge as shown in Eq. (8), we need to have a vector field A(x, t)
and a scalar field φ(x, t). Their presence allows the Schrödinger equation to be invariant under the local
gauge transformation which is now given by ψ(x, t) → ψ′(x, t) = eiΛ(x,t)ψ(x, t), φ(x, t) → φ′(x, t) and
A(x, t)→ A′(x, t) with the appropriate fields A′ and φ′.

(b) Gauge transformations can also be non-abelian. In this case, Λ(x, t) is not a number anymore. As an
example let us analyze a simple model given by the following Hamiltonian H which describes a special
spin-orbit coupling (SOC) in a two dimensional electron gas,

H =
~2

2m∗
(
k2 + 2(k ·Q)Σ

)
, (9)

with

Σ =
σy − σx√

2
, Q =

√
2m∗α

~

(
1
1

)
, (10)

where m∗ is the effective electron mass, σi Pauli matrices, k the wave vector in the x− y-plane and α the
strength of the SOC.

(i) Show that H can be rewritten in the form

H =
1

2m∗
(p + ~QΣ︸ ︷︷ ︸

=:−eASO

)2 − ~2Q2

2m∗
, (11)

where p can be interpreted as a gauge-dependent canonical momentum.

(ii) Show that U = exp(−iQ · rΣ) can be used as a gauge transformation which “gauges away” the
vector potential ASO.
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