Quantum Information Theory

Prof. John Schliemann
Dr. Paul Wenk

Tue. H33 13pm c.t. \& Thu. H34, 3pm c.t. Mon. 12pm c.t., H33

Sheet 8

1 Period Finding

One important application of the QFT is in Shoer's factorization algorithm. Assume a system consisting of two 3 -qubit systems which are an input register (|In \rangle) and an output register (|Out \rangle). The computational basis of each 3-qubit system is the orthogonal basis $\{|0\rangle \equiv|000\rangle,|1\rangle \equiv|001\rangle \ldots,|7\rangle \equiv|111\rangle\}$.
(a) Let the initial input register be

$$
\begin{equation*}
|\operatorname{In}\rangle=\frac{1}{\sqrt{8}} \sum_{x=0}^{7}|x\rangle . \tag{1}
\end{equation*}
$$

Following the lecture, we apply now U_{f} on the total initial state,

$$
\begin{equation*}
|\psi\rangle=U_{f} \frac{1}{\sqrt{8}} \sum_{x=0}^{7}|x\rangle|0\rangle=\frac{1}{\sqrt{8}} \sum_{x=0}^{7}|x, f(x)\rangle \tag{2}
\end{equation*}
$$

with $f(x)$ a periodic, non-constant function satisfying $f(x+2)=f(x)$. Show that if we measure the first register after we applied the QFT to it, we are left with only two distinct results. This is a direct consequence of the periodicity.
(b) Now, we generalize the above result to a system with each register being an N-qubit system and $f(x)$ having a period of P. Further, assume we apply the procedure corresponding to (a). Let the outcome of a measurement of the first register after this procedure be ξ. Show that

$$
\begin{equation*}
\xi \in\left\{0, \frac{1 \cdot 2^{N}}{P}, \frac{2 \cdot 2^{N}}{P}, \ldots, \frac{(P-1) \cdot 2^{N}}{P}\right\} \quad \text { with } \quad 2^{N} / P \in \mathbb{N} \tag{3}
\end{equation*}
$$

Hint: Say you have an arbitrary function $g(x)$ and you want to calculate $\sum_{x} g(x)$. How to rewrite this sum into two sums $\sum_{l, k} g(k P+l)$? Apply this separation to use the periodicity to simplify the expression.

2 Factorization Algorithm

In the lecture a prime factoring algorithm has been presented. Apply this algorithm to $N=35$. To simplify it: Choose in the first step a random m where the order is less than 10 .

3 RSA Cryptosystem.

Show in thin mini-example how the RSA cryptosystem works by encrypting the message " 13 " with $N=p q=15$ and the random number $e=3$ and decoding it again.

4 Josephson Junction

One possible building block for the realization of quantum computers are Josephson junctions. Here, we would like to derive the Hamiltonian describing the Josephson junction starting with the Josephson equations

$$
\begin{align*}
\frac{\mathrm{d} Q}{\mathrm{~d} t} & =-I_{\mathrm{ext}}+I_{c} \sin (\phi) \tag{4}\\
\frac{\mathrm{d} \phi}{\mathrm{~d} t} & =-\frac{2 e}{\hbar} V \tag{5}
\end{align*}
$$

where $Q=-2 e N=C V,-e$ the electron charge, $\phi=\theta_{2}-\theta_{2}$ the difference in the phases of the order parameters, N the number of Cooper pairs, I_{c} the critical current and $I_{\text {ext }}$ the external current.
(a) Write down the Euler-Lagrange equation which follows from the Josephson equations and deduce the Lagrangian L. Hint: Recall that the electrostatic energy is given by $C V^{2} / 2$.
(b) Write down the classical Hamiltonian function. What is the meaning of the conjugate momentum π to ϕ ?
(c) By imposing the canonical commutation relation $[\pi, \phi]=\hbar / i$ show that we end up with the Hamiltonian

$$
\begin{equation*}
H=-\frac{E_{C}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \phi^{2}}-E_{J} \cos (\phi)-E_{J} \frac{I_{\mathrm{ext}}}{I_{c}} \phi \tag{6}
\end{equation*}
$$

(d) What are the general solutions of Eq. (6) if $I_{\text {ext }}=0$?

