Quantum Information Theory

Prof. John Schliemann
Dr. Paul Wenk

Tue. H33 13pm c.t. \& Thu. H34, 3pm c.t. Mon. 12pm c.t., H33

Sheet 7

1 Remainder

(a) Which remainder is left when 3^{2049} is divided by 68 ?
(b) Find a such that $2741^{897} \equiv a(\bmod 3277)$.

2 Continued Fraction
 [18P]

(a) [2P] Write 3.14159 as a simple continued fraction (SCF).
(b) $[2 \mathrm{P}]$ Write $31 / 123$ into a SCF with an even and odd number of terms.
(c) $[2 \mathrm{P}]$ Given the approximation 3.14159 to π, calculate its successive convergents.
(d) $[3 \mathrm{P}]$ Show that $[2, \overline{2,4}]=\sqrt{6}$.
(e) $[3 \mathrm{P}]$ Given $x=[\overline{b, a}]$ where b is a multiple of a, show that x satisfies the equation $x^{2}-b x-b / a=0$.
(f) $[6 \mathrm{P}]$ Let p_{i} be the numerator and q_{i} the denominator of the i th convergent c_{i} of the continued fraction $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$. Prove that

$$
\begin{equation*}
\frac{p_{n}}{p_{n-1}}=\left[a_{n}, a_{n-1}, \ldots, a_{1}\right], \quad \text { and } \quad \frac{q_{n}}{q_{n-1}}=\left[a_{n}, a_{n-1}, \ldots, a_{2}\right] \tag{1}
\end{equation*}
$$

3 Circulant Matrix

Once again we take a look at the Quantum Fourier Transformation. Here, we would like to study the operator F with $F_{k j}=\omega^{j k} / \sqrt{N}$ (see lecture notes) in more detail.
Consider a $N \times N$ circulant matrix C. It is defined by

$$
C:=\left(\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{N-1} \tag{2}\\
c_{N-1} & c_{0} & c_{1} & \ldots & c_{N-2} \\
c_{N-2} & c_{N-1} & c_{0} & \ldots & c_{N-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{1} & c_{2} & c_{3} & \ldots & c_{0}
\end{array}\right)
$$

A circulant matrix with $c_{i}=\delta_{1 i}$, denoted by C_{p}, is called the primary permutation matrix. Furthermore, let us define $f(\lambda)=\sum_{i=0}^{N-1} c_{i} \lambda^{i}$.
(a) Show that $C=f\left(C_{p}\right)$ and that C is normal (what is the consequence of the latter?).
(b) Given the N th primitive root of unity, denoted by ω, show that the eigenvalues of C are $f\left(\omega^{m}\right), m=$ $0,1, \ldots, N-1$.
(c) Show that F with $F_{j k}=\omega^{(j-1)(k-1)} / \sqrt{N}, j, k=1, \ldots, N$ diagonalizes C.

