Quantum Information Theory

Prof. John Schliemann
Dr. Paul Wenk

Tue. H33 13pm c.t. \& Thu. H34, 3pm c.t. Mon. 12pm c.t., H33

Sheet 6

1 Implementation of a SWAP Gate

Consider the coupling between two electron spins \mathbf{S}_{i} described by the Heisenberg Hamiltonian,

$$
\begin{equation*}
H(t)=J(t) \mathbf{S}_{1} \cdot \mathbf{S}_{2} \tag{1}
\end{equation*}
$$

Assume the coupling to be switched on at $t=0$, i.e., $J(t)=J_{0} \theta(t)$ with the Heaviside function $\theta($.$) . At which$ moment is the time evolution operator $U(t)$ of H, given an appropriate coupling strength J_{0}, acting as a swap operator?

2 Magic Gate

This exercise is related to finding an optimal implementation of two-qubit gates. An important matrix M in this context is the magic gate, a matrix which transforms the binary basis into the magic basis $|j\rangle_{M}=M|j\rangle_{B}$ with $|j\rangle_{M} \in\left\{\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \frac{i}{\sqrt{2}}(|00\rangle-|11\rangle), \frac{i}{\sqrt{2}}(|01\rangle+|10\rangle), \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)\right\}$. The magic basis differs only by phase from an ordinary Bell basis.
(a) Show that $M=U_{\mathrm{CNOT} 2}\left(\mathbb{1}_{2} \otimes H\right)(S \otimes S)$ where H is the Hadamard gate, S the phase gate, and $U_{\mathrm{CNOT} 2}$ the CNOT gate where qubit 2 is the control qubit and qubit 1 is the target qubit
(b) Show that for every $U \in \mathrm{SO}(4)$ the matrix $M U M^{\dagger} \in \mathrm{SU}(2) \otimes \mathrm{SU}(2)$. Moreover, this mapping is an isomorphism.
Hint: Recall from Sheet 1 that every unitary matrix can be written using a phase, R_{z} and R_{y}. Now, $S U(n) \subset U(n)$ are all unitary matrices with determinant 1. The fact that $S O(4)$ and $S U(2) \otimes S U(2)$ have the same dimension does not need to be proven. Use (a) for the calculation of M^{-1}.

3 QFT
 [6P]

Given three qubits and the orthogonal basis $\{|0\rangle \equiv|000\rangle,|1\rangle \equiv|001\rangle \ldots,|7\rangle \equiv|111\rangle\}$, calculate the Fourier transformed state of

$$
\begin{equation*}
|\psi\rangle=\frac{1}{2} \sum_{n=0}^{7} \cos \left(2 \pi \frac{n}{8}\right)|n\rangle \tag{2}
\end{equation*}
$$

by applying the quantum Fourier transform.

4 Congruences

Find all solutions x_{Λ} for $8<\Lambda<12$ with

$$
\begin{align*}
x_{\Lambda} & \equiv 4(\bmod 5) \tag{3}\\
x_{\Lambda} & \equiv 4(\bmod 7) \tag{4}\\
x_{\Lambda} & \equiv 6(\bmod \Lambda) \tag{5}
\end{align*}
$$

by applying the Chinese remainder theorem.

5 Composite Numbers..[7P]

Prove that each increasing arithmetic progression ${ }^{1}$ of $x \in \mathbb{N}$ contains an arbitrarily long sequence of consecutive terms which are composite numbers ${ }^{2}$. What is the consequence for prime numbers?
Hint: Examine the set of equations $a x \equiv-b-a j\left(\bmod q_{j}^{2}\right)$, where $m>0, j=1,2, \ldots, m$, with primes q_{i} such that $a<q_{1}<q_{2}<\ldots<q_{m}$.

[^0]
[^0]: ${ }^{1}$ sequence of numbers such that the difference between the consecutive terms is constant
 ${ }^{2}$ a positive integer that can be formed by multiplying two smaller positive integers

