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1 Implementation of a SWAP Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . [4P]

Consider the coupling between two electron spins Si described by the Heisenberg Hamiltonian,

H(t) = J(t)S1 · S2 . (1)

Assume the coupling to be switched on at t = 0, i.e., J(t) = J0θ(t) with the Heaviside function θ(.). At which
moment is the time evolution operator U(t) of H, given an appropriate coupling strength J0, acting as a swap
operator?

2 Magic Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [8P]

This exercise is related to finding an optimal implementation of two-qubit gates. An important matrix M in
this context is the magic gate, a matrix which transforms the binary basis into the magic basis |j〉M = M |j〉B
with |j〉M ∈ {

1√
2
(|00〉+ |11〉), i√

2
(|00〉 − |11〉), i√

2
(|01〉+ |10〉), 1√

2
(|01〉 − |10〉)}. The magic basis differs only by

phase from an ordinary Bell basis.

(a) Show that M = UCNOT2(12 ⊗H)(S ⊗ S) where H is the Hadamard gate, S the phase gate, and UCNOT2

the CNOT gate where qubit 2 is the control qubit and qubit 1 is the target qubit

(b) Show that for every U ∈ SO(4) the matrix MUM† ∈ SU(2) ⊗ SU(2). Moreover, this mapping is an
isomorphism.
Hint: Recall from Sheet 1 that every unitary matrix can be written using a phase, Rz and Ry. Now,
SU(n) ⊂ U(n) are all unitary matrices with determinant 1. The fact that SO(4) and SU(2)⊗ SU(2) have
the same dimension does not need to be proven. Use (a) for the calculation of M−1.

3 QFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [6P]

Given three qubits and the orthogonal basis {|0〉 ≡ |000〉 , |1〉 ≡ |001〉 . . . , |7〉 ≡ |111〉}, calculate the Fourier
transformed state of

|ψ〉 =
1

2

7∑
n=0

cos
(

2π
n

8

)
|n〉 (2)

by applying the quantum Fourier transform.

4 Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [6P]

Find all solutions xΛ for 8 < Λ < 12 with

xΛ ≡ 4 (mod 5) , (3)

xΛ ≡ 4 (mod 7) , (4)

xΛ ≡ 6 (mod Λ) (5)



by applying the Chinese remainder theorem.

5 Composite Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [7P]

Prove that each increasing arithmetic progression1 of x ∈ N contains an arbitrarily long sequence of consecutive
terms which are composite numbers2. What is the consequence for prime numbers?
Hint: Examine the set of equations ax ≡ −b− aj (mod q2

j ), where m > 0, j = 1, 2, . . . ,m, with primes qi such
that a < q1 < q2 < . . . < qm.

1sequence of numbers such that the difference between the consecutive terms is constant
2a positive integer that can be formed by multiplying two smaller positive integers
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