Quantum Information Theory

Prof. John Schliemann Dr. Paul Wenk **Tue.** H33 13pm c.t. & **Thu.** H34, 3pm c.t. **Mon.** 12pm c.t., H33

Sheet 6

1 Implementation of a SWAP Gate.....[4P]

Consider the coupling between two electron spins S_i described by the Heisenberg Hamiltonian,

$$H(t) = J(t)\mathbf{S}_1 \cdot \mathbf{S}_2 \ . \tag{1}$$

Assume the coupling to be switched on at t = 0, i.e., $J(t) = J_0\theta(t)$ with the Heaviside function $\theta(.)$. At which moment is the time evolution operator U(t) of H, given an appropriate coupling strength J_0 , acting as a swap operator?

This exercise is related to finding an optimal implementation of two-qubit gates. An important matrix M in this context is the $magic\ gate$, a matrix which transforms the binary basis into the magic basis $|j\rangle_M=M\,|j\rangle_B$ with $|j\rangle_M\in\{\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle),\frac{i}{\sqrt{2}}(|00\rangle-|11\rangle),\frac{i}{\sqrt{2}}(|01\rangle+|10\rangle),\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)\}$. The magic basis differs only by phase from an ordinary Bell basis.

- (a) Show that $M = U_{\text{CNOT2}}(\mathbb{1}_2 \otimes H)(S \otimes S)$ where H is the Hadamard gate, S the phase gate, and U_{CNOT2} the CNOT gate where qubit 2 is the control qubit and qubit 1 is the target qubit
- (b) Show that for every $U \in SO(4)$ the matrix $MUM^{\dagger} \in SU(2) \otimes SU(2)$. Moreover, this mapping is an isomorphism.

Hint: Recall from Sheet 1 that every unitary matrix can be written using a phase, R_z and R_y . Now, $SU(n) \subset U(n)$ are all unitary matrices with determinant 1. The fact that SO(4) and $SU(2) \otimes SU(2)$ have the same dimension does not need to be proven. Use (a) for the calculation of M^{-1} .

$3 \quad QFT \dots [6P]$

Given three qubits and the orthogonal basis $\{|0\rangle \equiv |000\rangle, |1\rangle \equiv |001\rangle, |7\rangle \equiv |111\rangle\}$, calculate the Fourier transformed state of

$$|\psi\rangle = \frac{1}{2} \sum_{n=0}^{7} \cos\left(2\pi \frac{n}{8}\right) |n\rangle \tag{2}$$

by applying the quantum Fourier transform.

Find all solutions x_{Λ} for $8 < \Lambda < 12$ with

$$x_{\Lambda} \equiv 4 \pmod{5} \,, \tag{3}$$

$$x_{\Lambda} \equiv 4 \pmod{7}$$
, (4)

$$x_{\Lambda} \equiv 6 \pmod{\Lambda} \tag{5}$$

5	Composite Numbers	.[7P]	
----------	-------------------	-------	--

Prove that each increasing arithmetic progression¹ of $x \in \mathbb{N}$ contains an arbitrarily long sequence of consecutive terms which are composite numbers². What is the consequence for prime numbers?

Hint: Examine the set of equations $ax \equiv -b - aj \pmod{q_j^2}$, where m > 0, j = 1, 2, ..., m, with primes q_i such that $a < q_1 < q_2 < ... < q_m$.

 $^{^{1}}$ sequence of numbers such that the difference between the consecutive terms is constant

 $^{^{2}\}mathrm{a}$ positive integer that can be formed by multiplying two smaller positive integers