Quantum Information Theory

Prof. John Schliemann Dr. Paul Wenk **Tue.** H33 13pm c.t. & **Thu.** H34, 3pm c.t. **Mon.** 12pm c.t., H33

Sheet 5

1 Adding Qubits with the Help of the Fourier Transform [9P] The goal is to build a quantum circuit for the operation $|x\rangle \rightarrow |x+y| \mod 2^n\rangle$ with y being a constant and

The goal is to build a quantum circuit for the operation $|x\rangle \to |x+y| \mod 2^n\rangle$ with y being a constant and $0 \le x < 2^n$. In contrast to the simple addition with carrier from sheet 3 we perform the addition in the Fourier space: First, we apply a quantum Fourier transform (QFT) to $|x\rangle$, apply appropriate phase shifts which implement the addition, and finally reverse the QFT.

- (a) Describe every step of the above procedure. How do the operators for the controlled phase shifts look like which implement the addition? *Hint: Write down the values to be added in binary.*
- (b) Plot the quantum circuit for adding x and y in the case where both consist of three qubits.
- (c) For which values of y is this procedure most optimal?

2 Divisibility of Numbers......[12P]

- (a) Find all $n \in \mathbb{N}$ such that $n+1|n^2+1$.
- (b) Find all $n \in \mathbb{Z} \setminus \{3\}$ such that $n 3|n^3 3$.
- (c) (i) By factorizing $a^{p-1}-1$ for p>2 prime and $a\in\mathbb{Z}$, $p\nmid a$, show that

$$a^{\frac{p-1}{2}} \equiv \pm 1 \mod p. \tag{1}$$

(ii) Prove $20801|20^{15} - 1$.

Hint: Factorize 20801 and use Fermat's little theorem and (i).

Assume $a, b \in \mathbb{N}$ with $10 \nmid a$, $10 \nmid b$ and ab = 1000. Determine a + b.

4 Zero Divisor......[5P]

A ring R is free of zero divisors if $\forall_{a,b\in\mathbb{R}} \ a\cdot b=0 \ \Rightarrow \ a=0 \ \lor \ b=0$. Show that $\mathbb{Z}/m\mathbb{Z}$ is free of zero divisors iff m is prime.