Quantum Information Theory

Prof. John Schliemann
Dr. Paul Wenk

Tue. H33 13pm c.t. \& Thu. H34, 3pm c.t. Mon. 12pm c.t., H33

Sheet 4

1 Big-O: Hardness of problems

(a) Show that a classical circuit constructed of n NAND gates is able to implement at most $\mathcal{O}\left(n^{2 n}\right)$ boolean functions.
(b) Now, consider an arbitrary unitary transformation which acts on n qubits. Show that it has $\mathcal{O}\left(2^{2 n}\right)$ degrees of freedom.

2 Grover iteration [6P]
(a) Which part of the Grover iteration acting on two qubits is represented in Fig. 1?
(b) Let us continue with the two-bit search. Assume the oracle with $f(x)=0$ for all x except for $x=x_{0}$ with $f\left(x_{0}\right)=1$. With two qubits we have a search space of size $N=2^{2}$.
(i) Write down the possible oracle circuits.
(ii) How many iterations n are needed in this case to get to the solution state? Consult the upper bound formula and apply the Grover iteration G^{n} explicitly on the initial state.
(iii) How many queries are required on average in the classical case?

Figure 1: Part of the quantum circuit for the Grover iteration.

3 Arbitrary Single Qubit Unitary Operator....................... [10P]

(a) Given are two arbitrary unit vectors $\hat{\mathbf{n}}$ and $\hat{\mathbf{m}}$ with $\hat{\mathbf{m}} \times \hat{\mathbf{n}} \neq \mathbf{0}$. Is it possible to write an arbitrary single qubit unitary operator U as

$$
\begin{equation*}
U=e^{i \alpha} R_{\hat{\mathbf{n}}}(\beta) R_{\hat{\mathbf{m}}}(\gamma) R_{\hat{\mathbf{n}}}(\delta) \quad \text { with } \quad R_{\hat{\mathbf{n}}}(\phi):=\exp (-i \phi \hat{\mathbf{n}} \cdot \boldsymbol{\sigma} / 2), \alpha, \beta, \gamma, \delta, \phi \in \mathbb{R} ? \tag{1}
\end{equation*}
$$

Hint: Read paper by Mitsuru Hamada.
(b) Show that $X R_{\hat{y}}(\theta) X=R_{\hat{y}}(-\theta)$
(c) Given a single qubit unitary operator U, show that U can be represented using three unitary operators A, B, C on a single qubit with

$$
\begin{equation*}
A B C=\mathbb{1} \quad \text { and } \quad U=e^{i \alpha} A X B X C \quad \text { with } \quad \alpha \in \mathbb{R} . \tag{2}
\end{equation*}
$$

Hint: Choose A as a composition of rotations R_{z} and R_{y}, B as a composition of R_{y} and R_{z} and C as R_{z} with appropriate angles.
(d) Write the Hadamard gate H and the phase gate S in the form of Eq. (1).
(e) Reconstruct the quantum circuit shown in Fig. 2 with
(i) $U=R_{x}(\theta)$,
(ii) $U=R_{y}(\theta)$,
(iii) $U=R_{k}$ which is needed in the quantum Fourier transform, by using only CNOT and single qubit gates.

Figure 2: Quantum circuit of a controlled U.

