## Quantum Information Theory

Prof. John Schliemann Dr. Paul Wenk **Tue.** H33 13pm c.t. & **Thu.** H34, 3pm c.t. **Mon.** 12pm c.t., H33

## Sheet 11

## 

Consider three qubits which are exposed to errors. The errors are rotations of the form  $U = \exp(i\epsilon\sigma_x)$  with  $\epsilon \ll 1$ . Each qubit can be affected, thus

$$|\psi\rangle_E = E |\psi\rangle_L \quad \text{with} \quad E = U^{\otimes 3} \ . \tag{1}$$

The corresponding quantum circuit for encoding an arbitrary state  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$  with  $\alpha, \beta \in \mathbb{C}$ ,  $|\alpha|^2 + |\beta|^2 = 1$ , and correcting the error is shown in Fig. 1.



Figure 1: Quantum circuit for encoding and correcting (C-operation) a single bit-flip error (E-operation).

- (a) Write down the ancilla measurements for a single  $\sigma_x$  error and the ambiguity of the syndrome results when multiple errors occur.
- (b) Now, assume that the errors acting on the qubits are described by U. Corresponding to the measured ancilla block an appropriate correction operator is applied (see Fig. 1 and Tab. 1). Compare the fidelity  $F_0 = |\langle \psi | U | \psi \rangle|^2$  without error correction code with the worst case fidelity (= state  $|\psi\rangle_L$  is orthogonal to the state  $\sigma_x^{\otimes 3} |\psi\rangle_L$ ) after applying the error correction.

| ancilla | correction                                                                               |
|---------|------------------------------------------------------------------------------------------|
| 00      | $c_0 \left  \psi \right\rangle_L + c_3 \sigma_x^{\otimes 3} \left  \psi \right\rangle_L$ |
| 01      | $c_1  \psi\rangle_L^2 + c_2 \sigma_x^{\otimes 3}  \psi\rangle_L^2$                       |
| 10      | $c_1  \psi\rangle_L^2 + c_2 \sigma_x^{\otimes 3}  \psi\rangle_L^2$                       |
| 11      | $c_1 \ket{\psi}_L + c_2 \sigma_x^{\otimes 3} \ket{\psi}_L$                               |

Table 1: Quantum states after error correction.  $c_0 = \cos^3(\epsilon)$ ,  $c_1 = i\cos^2(\epsilon)\sin(\epsilon)$ ,  $c_2 = -\cos(\epsilon)\sin^2(\epsilon)$ ,  $c_3 = -i\sin^3(\epsilon)$ .

In the lecture the operator-sum representation has been used to represent quantum operations as  $\sum_{n} E_{n} \rho E_{n}^{\dagger}$  using the operation elements  $\{E_{i}\}$ .

- (a) To get to this representation one assumes that the environment starts in a pure state. This can be done w.l.o.g. because we can *purify* a mixed state by introducing an additional system. To see this, consider two systems A and B with  $\rho_A = \sum_n \lambda_n |a_n\rangle\langle a_n|$ .
  - (i) Show that  $|\psi\rangle = \sum_n \sqrt{\lambda_n} |a_n\rangle_A \otimes |b_n\rangle_B$  is a purification of  $\rho_A$  for any orthonormal basis  $\{|b_n\rangle\}_n$  with  $\rho_A = \operatorname{tr}_B(|\psi\rangle\langle\psi|)$ .
  - (ii) The purification of the system is not unique. Consider a second purifying system B'. Show that B and B' are related via a unitary transformation.

Hint: Write down the purified system using the Schmidt decomposition.

(b) Consider the quantum circuit shown in Fig. 2. What are the corresponding operation elements  $E_n$  and what is the physical process described by this system?



Figure 2: Quantum circuit

## 3 Generator Matrix and Hamming Code ...... [8P]

Consider the generator matrix over a finite field of order  $3^1$ 

$$G = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 2 & 2 & 1 \end{pmatrix} . \tag{2}$$

Calculate the corresponding parity check matrix H.

Hint: Transform G into the standard form, i.e., G = [1 P].

 $<sup>^1 {\</sup>rm also}$  called Galois field, here GF(3); the coset  $\mod \ 2$  is GF(2)