Quantum Information Theory

Prof. John Schliemann
Dr. Paul Wenk

Tue. H33 13pm c.t. \& Thu. H34, 3pm c.t. Mon. 12pm c.t., H33

Sheet 1

1 Guessing States

Alice prepares one of the following states,

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=|0\rangle \quad \text { or } \quad\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \tag{1}
\end{equation*}
$$

and gives it to Bob. Bob has to identify the state using three positive operators Γ_{1}, Γ_{2} and Γ_{3} with $\sum_{i} \Gamma_{i}=\mathbb{1}$ under the following conditions:

- He is allowed to say he does not know the state.
- Sometimes his measurement has to give the correct answer.
- He is never allowed to give a wrong answer.

Given $\Gamma_{1}=(\sqrt{2} /(1+\sqrt{2}))|1\rangle\langle 1|$, what are the other two states? Beware: The operators Γ_{i} have to be positive!

2 Hadamard operator I.
 [6P]

Calculate the eigenvectors of the Hadamard operator $H^{\otimes 2}$. To do so, write $H^{\otimes 2}$ in the Bell basis.
3 Density Matrix I
[6P]
(a) Let Λ_{1} be an ensamble of states $\{|0\rangle,|1\rangle\}$ which constitute a density matrix

$$
\begin{equation*}
\rho=\alpha^{2}|0\rangle\langle 0|+\beta^{2}|1\rangle\langle 1| \quad \text { with } \quad \alpha^{2}+\beta^{2}=1 \tag{2}
\end{equation*}
$$

How does a general ensamble of states $\{|a\rangle,|b\rangle\}$ look like which yields the same density matrix with

$$
\begin{equation*}
\rho=\frac{1}{2}|a\rangle\langle a|+\frac{1}{2}|b\rangle\langle b| ? \tag{3}
\end{equation*}
$$

(b) Given an arbitrary mixed state qubit, show that its density matrix can be written as

$$
\begin{equation*}
\rho=\frac{\mathbb{1}+\mathbf{r} \cdot \boldsymbol{\sigma}}{2} \tag{4}
\end{equation*}
$$

with the Pauli vector $\boldsymbol{\sigma}$ and the Bloch vector $\mathbf{r},\|\mathbf{r}\| \leq 1$.

4 Schmidt Decomposition

Find the Schmidt decomposition of the following states which are consisting of two qubits,
(a) $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$,
(b) $\frac{|00\rangle+|01\rangle+|10\rangle+|11\rangle}{2}$,
(c) $\frac{|00\rangle+|01\rangle+|11\rangle}{\sqrt{3}}$.

