Quantum Information Theory

Prof. John Schliemann Dr. Paul Wenk **Tue.** H33 13pm c.t. & **Thu.** H34, 3pm c.t. **Mon.** 12pm c.t., H33

Sheet 0

1 The NAND Gate......[6P]

The classical NAND gate is defined by $x \text{ NAND } y := \overline{x \wedge y}$. Replace the

- (a) OR gate $[x \text{ OR } y := x \vee y]$,
- (b) AND gate $[x \text{ AND } y := x \land y],$
- (c) XNOR gate $[x \text{ XNOR } y := \overline{x \vee y} \equiv \overline{x \oplus y}]$

with a combination of NAND gates by applying Boolean algebra. Try to use a minimal number of NAND gates!

2 Stern Gerlach Experiment.....[3P]

Figure 1: Measurement

An oven is ejecting particles with spin 1/2. According to Fig. 1 we first measure the spin according to the eigenbasis $\{|\pm Z\rangle\}$ of the Pauli matrix σ_z . The device blocks the spin-down component. In the next part of the device the measurement is carried out by measuring in the σ_x basis with blocking of $|-X\rangle$. Finally, we measure again in the σ_z basis. What are the probability densities of the last both channels?

- (a) [2P] Let $|+\rangle=(|0\rangle+|1\rangle)/\sqrt{2},\, |-\rangle=(|0\rangle-|1\rangle)/\sqrt{2}.$ Write out
 - (i) $|+\rangle^{\otimes 2}$
 - (ii) $\left|-\right\rangle^{\otimes 3}$

explicitly as a tensor product using $|.\rangle|.\rangle$ and as a Kronecker product.

- (b) [2P] Show that the tensor product of two projection operators is a projection operator.
- (c) [3P] What is the expectation value of the $\sigma_x \otimes \sigma_z$ operator in the $|\psi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ state where $\{|0\rangle, |1\rangle\}$ are the single particle eigenstates of σ_z ?

4	Unitary Transformation	[6P]
Shov	w that an arbitrary 2×2 unitary matrix can be written as	
	$U = e^{i\alpha} \Lambda(\beta) R(\gamma) \Lambda(\nu)$	(1)
with		
	$\Lambda(\nu) = \begin{pmatrix} e^{i\nu} & 0 \\ 0 & 1 \end{pmatrix}, R(\gamma) = \begin{pmatrix} \cos(\gamma) & \sin(\gamma) \\ -\sin(\gamma) & \cos(\gamma) \end{pmatrix} \text{with} \alpha, \beta, \gamma, \nu \in \mathbb{R} \ .$	(2)
5	Entanglement	[8P]
Given the state $ \psi\rangle$ from Ex. 3 (c), can you find a state $ a\ b\rangle\equiv a\rangle\otimes b\rangle$ with $ \psi\rangle= ab\rangle$?		