From Amenable to Inner-amenable

Matthias Uschold, University of Regensburg

Ventotene, September 11th, 2023

Question

Let G be a residually finite group with residual chain $(G_i)_{i\in\mathbb{N}}$, $k\in\mathbb{N}$, K be a field. When is

$$\lim_{i\to\infty}\frac{\dim_K H_k(BG_i;K)}{[G:G_i]}=0?$$

¹+some finiteness conditions

Question

Let G be a residually finite group with residual chain $(G_i)_{i\in\mathbb{N}}$, $k\in\mathbb{N}$, K be a field. When is

$$\lim_{i\to\infty}\frac{\dim_K H_k(BG_i;K)}{[G:G_i]}=0?$$

Answer

For example if G is amenable and infinite¹

¹+some finiteness conditions

Question

Let G be a residually finite group with residual chain $(G_i)_{i \in \mathbb{N}}$, $k \in \mathbb{N}$, K be a field. When is

$$\lim_{i\to\infty}\frac{\dim_K H_k(BG_i;K)}{[G:G_i]}=0?$$

Answer

For example if G is amenable and infinite¹

Observation

Also true for $G = A \times \Gamma$ where

A: infinite and amenable

Γ: arbitrary group

¹+some finiteness conditions

Definition (amenability)

A group G is amenable if there exists a left-invariant mean $\ell^\infty(G,\mathbb{R}) \to \mathbb{R}$.

Definition (inner-amenability)

A group G is *inner-amenable* if there exists a conjugation-invariant² mean $\ell^{\infty}(G, \mathbb{R}) \to \mathbb{R}$.

Definition (inner-amenability)

A group G is *inner-amenable* if there exists a conjugation-invariant² mean $\ell^{\infty}(G,\mathbb{R}) \to \mathbb{R}$.

Example

- Infinite, amenable groups
- $A \times \Gamma$, where A: infinite amenable
- BS(*m*, *n*)
- Not: *F*₂.

Theorem ([Usc22, Corollary 1.3])

Let G be a torsion-free, inner-amenable³ group. Then,

$$\lim_{i\to\infty}\frac{\dim_K H_1(BG_i;K)}{[G:G_i]}=0,$$

for any residual chain $(G_i)_{i\in\mathbb{N}}$ and field K.

³and finitely generated, residually finite

Theorem ([Usc22, Corollary 1.3])

Let G be a torsion-free, inner-amenable³ group. Then,

$$\lim_{i\to\infty}\frac{\dim_K H_1(BG_i;K)}{[G:G_i]}=0,$$

for any residual chain $(G_i)_{i\in\mathbb{N}}$ and field K.

Challenge

Extend results from amenable to inner-amenable groups!

³and finitely generated, residually finite

Theorem ([Usc22, Corollary 1.3])

Let G be a torsion-free, inner-amenable³ group. Then,

$$\lim_{i\to\infty}\frac{\dim_K H_1(BG_i;K)}{[G:G_i]}=0,$$

for any residual chain $(G_i)_{i\in\mathbb{N}}$ and field K.

Challenge

Extend results from amenable to inner-amenable groups!

Thanks!

³and finitely generated, residually finite

References

Matthias Uschold.

Torsion homology growth and cheap rebuilding of inner-amenable groups.

arXiv:2212.07916, 2022.