Amenable Groups in Lean

Matthias Uschold, University of Regensburg

September 26, 2023

A group is amenable if it admits a left-invariant mean.

A group is amenable if it admits a left-invariant mean.

Definition (mean)

A *mean* on G is a linear map $m:\ell^\infty(G,\mathbb{R})\to\mathbb{R}$ such that

A group is amenable if it admits a left-invariant mean.

Definition (mean)

A *mean* on G is a linear map $m:\ell^\infty(G,\mathbb{R})\to\mathbb{R}$ such that

• Normality: $m(\text{const}_1) = 1$.

A group is amenable if it admits a left-invariant mean.

Definition (mean)

A *mean* on G is a linear map $m: \ell^{\infty}(G, \mathbb{R}) \to \mathbb{R}$ such that

- Normality: $m(\text{const}_1) = 1$.
- Positivity: If $f \ge 0$, then $m(f) \ge 0$.

A group is amenable if it admits a left-invariant mean.

Definition (mean)

A *mean* on G is a linear map $m:\ell^\infty(G,\mathbb{R}) \to \mathbb{R}$ such that

- Normality: $m(\text{const}_1) = 1$.
- Positivity: If $f \ge 0$, then $m(f) \ge 0$.

Definition

A mean m is left-invariant if for all $g \in G$ and $f \in \ell^{\infty}(G, \mathbb{R})$,

$$m(g \cdot f) = m(f)$$
.

A group is amenable if it admits a left-invariant mean.

Definition (mean)

A *mean* on G is a linear map $m:\ell^\infty(G,\mathbb{R}) \to \mathbb{R}$ such that

- Normality: $m(\text{const}_1) = 1$.
- Positivity: If $f \ge 0$, then $m(f) \ge 0$.

Definition

A mean m is left-invariant if for all $g \in G$ and $f \in \ell^{\infty}(G, \mathbb{R})$,

$$m(g \cdot f) = m(f)$$
.

Here, $g \cdot f \in \ell^{\infty}(G, \mathbb{R})$ is defined by

$$(g \cdot f)(x) := f(g^{-1} \cdot x).$$

• Finite groups are amenable.

• Finite groups are amenable. If $f: G \to \mathbb{R}$, define

$$m(f) := \frac{1}{|G|} \cdot \sum_{x \in G} f(x).$$

- Finite groups are amenable.
- Abelian groups are amenable.

- Finite groups are amenable.
- Abelian groups are amenable.
- Subgroups, quotients, and extensions of amenable groups are amenable.

- Finite groups are amenable.
- Abelian groups are amenable.
- Subgroups, quotients, and extensions of amenable groups are amenable.
- F_2 is *not* amenable.

Theorem (Banach-Tarski-Paradox)

There exists a disjoint partition

$$S^2 = A_1 \sqcup \cdots \sqcup A_m \sqcup B_1 \sqcup \cdots \sqcup B_n$$

Theorem (Banach-Tarski-Paradox)

There exists a disjoint partition

$$S^2 = A_1 \sqcup \cdots \sqcup A_m \sqcup B_1 \sqcup \cdots \sqcup B_n$$

and rotations $f_1, \ldots, f_m, g_1, \ldots, g_n : S^2 \to S^2$ such that

Theorem (Banach-Tarski-Paradox)

There exists a disjoint partition

$$S^2 = A_1 \sqcup \cdots \sqcup A_m \sqcup B_1 \sqcup \cdots \sqcup B_n$$

and rotations $f_1, \ldots, f_m, g_1, \ldots, g_n : S^2 \to S^2$ such that

$$f_1(A_1) \sqcup \cdots \sqcup f_m(A_m) = S^2$$

$$g_1(B_1)\sqcup\cdots\sqcup g_n(B_n)=S^2.$$

Theorem (Banach-Tarski-Paradox)

There exists a disjoint partition

$$S^2 = A_1 \sqcup \cdots \sqcup A_m \sqcup B_1 \sqcup \cdots \sqcup B_n$$

and rotations $f_1, \ldots, f_m, g_1, \ldots, g_n : S^2 \to S^2$ such that

$$f_1(A_1) \sqcup \cdots \sqcup f_m(A_m) = S^2$$

$$g_1(B_1)\sqcup\cdots\sqcup g_n(B_n)=S^2.$$

"Proof".

• SO(3) contains F_2 as a subgroup.

Theorem (Banach-Tarski-Paradox)

There exists a disjoint partition

$$S^2 = A_1 \sqcup \cdots \sqcup A_m \sqcup B_1 \sqcup \cdots \sqcup B_n$$

and rotations $f_1, \ldots, f_m, g_1, \ldots, g_n : S^2 \to S^2$ such that

$$f_1(A_1) \sqcup \cdots \sqcup f_m(A_m) = S^2$$

$$g_1(B_1) \sqcup \cdots \sqcup g_n(B_n) = S^2.$$

"Proof".

- SO(3) contains F_2 as a subgroup.
- F₂ is not amenable, hence admits a paradoxical decomposition.

Theorem (Banach-Tarski-Paradox)

There exists a disjoint partition

$$S^2 = A_1 \sqcup \cdots \sqcup A_m \sqcup B_1 \sqcup \cdots \sqcup B_n$$

and rotations $f_1, \ldots, f_m, g_1, \ldots, g_n : S^2 \to S^2$ such that

$$f_1(A_1) \sqcup \cdots \sqcup f_m(A_m) = S^2$$

$$g_1(B_1) \sqcup \cdots \sqcup g_n(B_n) = S^2.$$

"Proof".

- SO(3) contains F_2 as a subgroup.
- F₂ is not amenable, hence admits a paradoxical decomposition. Thus, also S².

• the Definition

- the Definition
- Finite groups are amenable.

- the Definition
- Finite groups are amenable.
- Subgroups, quotients, and extensions of amenable groups are amenable.

- the Definition
- Finite groups are amenable.
- Subgroups, quotients, and extensions of amenable groups are amenable.
- F_2 is *not* amenable.

- the Definition
- Finite groups are amenable.
- Subgroups, quotients, and extensions of amenable groups are amenable.
- F_2 is *not* amenable.
- \mathbb{Z} is amenable.

DEMO

 \mathbb{Z} is amenable.

 \mathbb{Z} is amenable.

Proof.

Define $m:\ell^\infty(\mathbb{Z},\mathbb{R}) \to \mathbb{R}$ by

$$m(f) \coloneqq \frac{1}{|\mathbb{Z}|} \sum_{\mathsf{x} \in \mathbb{Z}} f(\mathsf{x}).$$

 \mathbb{Z} is amenable.

Proof.

Define $m:\ell^\infty(\mathbb{Z},\mathbb{R}) \to \mathbb{R}$ by

$$m(f) := \frac{1}{2n+1} \sum_{x=-n}^{n} f(x).$$

 \mathbb{Z} is amenable.

Proof.

Define $m: \ell^{\infty}(\mathbb{Z}, \mathbb{R}) \to \mathbb{R}$ by

$$m(f) := \lim_{n \to \infty} \frac{1}{2n+1} \sum_{x=-n}^{n} f(x).$$

 \mathbb{Z} is amenable.

Proof.

Define $m:\ell^\infty(\mathbb{Z},\mathbb{R}) \to \mathbb{R}$ by

$$m(f) := \lim_{n \in \omega} \frac{1}{2n+1} \sum_{x=-n}^{n} f(x).$$

where ω is a non-principal ultrafilter on \mathbb{N} .

 \mathbb{Z} is amenable.

Proof.

Define $m:\ell^\infty(\mathbb{Z},\mathbb{R})\to\mathbb{R}$ by

$$m(f) := \lim_{n \in \omega} \frac{1}{2n+1} \sum_{x=-n}^{n} f(x).$$

where ω is a non-principal ultrafilter on \mathbb{N} .

• By the ultrafilter convergence theorem, the limit exists.

 \mathbb{Z} is amenable.

Proof.

Define $m:\ell^\infty(\mathbb{Z},\mathbb{R}) \to \mathbb{R}$ by

$$m(f) := \lim_{n \in \omega} \frac{1}{2n+1} \sum_{x=-n}^{n} f(x).$$

where ω is a non-principal ultrafilter on \mathbb{N} .

- By the ultrafilter convergence theorem, the limit exists.
- Check: This defines a left-invariant mean.

 \mathbb{Z} is amenable.

Proof.

Define $m: \ell^{\infty}(\mathbb{Z}, \mathbb{R}) \to \mathbb{R}$ by

$$m(f) := \lim_{n \in \omega} \frac{1}{|F_n|} \sum_{x \in F_n} f(x).$$

where ω is a non-principal ultrafilter on \mathbb{N} .

- By the ultrafilter convergence theorem, the limit exists.
- Check: This defines a left-invariant mean.

Remark

Works for a Følner sequence $(F_n)_{n\in\mathbb{N}}$ (e.g. $F_n:=\{-n,\ldots,n\}$).

A Følner sequence for G is a sequence $(F_n)_{n\in\mathbb{N}}$ of finite subsets of G such that

A Følner sequence for G is a sequence $(F_n)_{n\in\mathbb{N}}$ of finite subsets of G such that

• For all $n \in \mathbb{N}$, $F_n \neq \emptyset$

A Følner sequence for G is a sequence $(F_n)_{n\in\mathbb{N}}$ of finite subsets of G such that

- For all $n \in \mathbb{N}$, $F_n \neq \emptyset$
- For all $g \in G$, we have

$$\lim_{n\to\infty}\frac{|gF_n\triangle F_n|}{|F_n|}=0.$$

A Følner sequence for G is a sequence $(F_n)_{n\in\mathbb{N}}$ of finite subsets of G such that

- For all $n \in \mathbb{N}$, $F_n \neq \emptyset$
- For all $g \in G$, we have

$$\lim_{n\to\infty}\frac{|gF_n\triangle F_n|}{|F_n|}=0.$$

Example

$$F_n := \{-n, \ldots, n\}$$
 for $G = \mathbb{Z}$.

DEMO

doable

• doable, and also fun

- doable, and also fun
- better understanding

- doable, and also fun
- better understanding
- well-suited for some applications

THANKS!

Check out the code on my webpage:
https://homepages.uni-regensburg.de/~usm34387/
Matthias Uschold, University of Regensburg