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A group is amenable if it admits a left-invariant mean.

Definition (mean)

A mean on G is a linear map m: (>°(G,R) — R such that
® Normality: m(const;) = 1.
e Positivity: If >0, then m(f) > 0.

Definition
A mean mis left-invariant if for all g€ G and f€ (>°(G,R),

mig- 1) = m(f).
Here, g- f€ (°°(G,R) is defined by

(g-N(x) =flg " x).
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® Finite groups are amenable. If f: G — R, define

1
m(f) = G . Z f(x).

x€G
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F> is not amenable.
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Theorem (Banach-Tarski-Paradox)
There exists a disjoint partition

P=AU---UA,UBU---UB,
and rotations fy, ..., fm, g1,...,8n: S> — S such that

A(AD) U U fn(Am) = S
gi(B1) U+ Ugn(Bn) = S

“Proof".
® SO(3) contains F;, as a subgroup.

® F, is not amenable, hence admits a paradoxical
decomposition. Thus, also 2.
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7 is amenable.
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Z is amenable.

Proof.
Define m: ¢>*(Z,R) — R by

m(f) =

1
1Z|

> 0.

XEZ
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Theorem
7 is amenable.

Proof.
Define m: ¢>°(Z,R) — R by

_ 1
m(f) == r|7|€r2 I

> ).

x€F,

where w is a non-principal ultrafilter on N.
® By the ultrafilter convergence theorem, the limit exists.

® Check: This defines a left-invariant mean.

Remark
Works for a Fglner sequence (Fp)nen (e.8. Fni={—n,...,n}).
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Definition (Fglner sequence)

A Fglner sequence for G is a sequence (F,)pen of finite subsets of
G such that

e ForallneN, F,#0
® For all g€ G, we have

|gFn AF,| B

Jim Al 0.

Example
Fni={-n,...,n} for G=7.
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o well-suited for some applications



THANKS!

Check out the code on my webpage:
https://homepages.uni-regensburg.de/~usm34387/
Matthias Uschold, University of Regensburg
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