From Amenable to Inner-amenable Matthias Uschold, University of Regensburg Göttingen, October 9th or 10th, 2023 ## Question Let G be a residually finite group with residual chain $(G_i)_{i\in\mathbb{N}}$, $k\in\mathbb{N}$, K be a field. When is $$\lim_{i\to\infty}\frac{\dim_K H_k(BG_i;K)}{[G:G_i]}=0?$$ ¹+some finiteness conditions ## Question Let G be a residually finite group with residual chain $(G_i)_{i\in\mathbb{N}}$, $k\in\mathbb{N}$, K be a field. When is $$\lim_{i\to\infty}\frac{\dim_K H_k(BG_i;K)}{[G:G_i]}=0?$$ #### Answer For example if G is amenable and infinite¹ ¹+some finiteness conditions ## Question Let G be a residually finite group with residual chain $(G_i)_{i \in \mathbb{N}}$, $k \in \mathbb{N}$, K be a field. When is $$\lim_{i\to\infty}\frac{\dim_K H_k(BG_i;K)}{[G:G_i]}=0?$$ #### Answer For example if G is amenable and infinite¹ #### Observation Also true for $G = A \times \Gamma$ where A: infinite and amenable Γ: arbitrary group ¹+some finiteness conditions # Definition (amenability) A group G is amenable if there exists a left-invariant mean $\ell^\infty(G,\mathbb{R}) \to \mathbb{R}$. # Definition (inner-amenability) A group G is *inner-amenable* if there exists a conjugation-invariant² mean $\ell^{\infty}(G,\mathbb{R}) \to \mathbb{R}$. ²and atomless # Definition (inner-amenability) A group G is *inner-amenable* if there exists a conjugation-invariant² mean $\ell^{\infty}(G,\mathbb{R}) \to \mathbb{R}$. # Example - Infinite, amenable groups - $A \times \Gamma$, where A: infinite amenable - BS(*m*, *n*) - PL-homeomorphisms of \mathbb{R} (such as Thompson's group F) - Not: F₂. # Theorem ([Usc22, Corollary 1.3]) Let G be a torsion-free, inner-amenable 3 group. Then, $$\lim_{i\to\infty}\frac{\dim_K H_1(BG_i;K)}{[G:G_i]}=0,$$ for any residual chain $(G_i)_{i\in\mathbb{N}}$ and field K. ³and finitely generated, residually finite # Theorem ([Usc22, Corollary 1.3]) Let G be a torsion-free, inner-amenable 3 group. Then, $$\lim_{i\to\infty}\frac{\dim_K H_1(BG_i;K)}{[G:G_i]}=0,$$ for any residual chain $(G_i)_{i\in\mathbb{N}}$ and field K. ## Challenge Extend results from amenable to inner-amenable groups! ³and finitely generated, residually finite # Bonus slide: Relation to a-T-menable [BCS00] # Bonus slide: Relation to a-T-menable [BCS00] # Thanks! ### References Matthias Uschold. Torsion homology growth and cheap rebuilding of inner-amenable groups. arXiv:2212.07916, 2022.