SoSe 2021 Sheet 1

Exercises Algebraic Number Theory II

(due Monday 19th of April, 20:00, to manuel.hoff@uni-due.de)

On each exercise sheet, one solution will be corrected in more detail. Please, indicate your choice.

Exercise 1.

Use integration by parts to prove that the Gamma function satisfies the functional equation

$$\Gamma(z+1) = z\Gamma(z)$$
 for all $z \in \mathbb{C}$ with $\operatorname{Re}(z) > 0$.

Deduce the formula $\Gamma(n+1) = n!$ for a non-negative integer n.

Exercise 2.

In this exercise, we will use the functional equation of the Gamma function to prove the following result. The Gamma function extends to a holomorphic function on $\mathbb{C} \setminus \{0, -1, -2, ...\}$ satisfying the functional equation $\Gamma(z + 1) = z\Gamma(z)$. For a non-negative integer *n*, the Gamma function has a simple pole at z = -n with residue

$$\operatorname{Res}_{z=-n} \Gamma(z) = \frac{(-1)^n}{n!}.$$

Exercise 3.

We have already seen that the Gamma function extends to a meromorphic function on \mathbb{C} with simple poles at the non-positive integers. One might ask about its zeros. Prove that $\Gamma(z)$ is a non-vanishing function on $\mathbb{C} \setminus \{0, -1, -2, ...\}$.

Exercise 4.

Use the Euler product of the Riemann zeta function to prove for all real s > 1 the estimate

$$0 < \left| \log \zeta(s) - \sum_{p \text{ prime}} \frac{1}{p^s} \right| < \frac{1}{2}.$$

Conclude that the series

$$\sum_{p \text{ prime}} \frac{1}{p}$$

diverges and that there are infinitely many primes.

5 P.

5 P.