Let M be a finitely generated module over a noetherian ring A. Define the length $l_A(M) \in \mathbb{N} \cup \{0\}$ as the supremum of the length of the chains of submodules of M. The length of the ring A as a module over itself is often denoted as l(A).

- 1. If A is a field, what is $l_A(M)$?
- 2. Let R be one of the rings below, and denote by $A := R_{nil(R)}$. Compute $l_A(A)$ for
 - (a) R = k[x];
 - (b) $R = k[x, \varepsilon]/(\varepsilon^2);$
 - (c) $R = k[x, \varepsilon]/(\varepsilon^2, \epsilon x)$.

For a closed subscheme Z of a variety X with integral components Z_1, \ldots, Z_k denote by the fundamental class of Z

$$[Z] := \sum_{i=1}^{k} m_i [Z_i]$$

where $m_i = l(\mathcal{O}_{Z,Z_i})$ is called the multiplicity of the component Z_i .

- 3. Let C_1, C_2 be two curves in \mathbb{A}^2_k given by equations f(x, y) = 0, g(x, y) = 0. Compute the multiplicities of the components of $C_1 \cap C_2$ for
 - (a) $f = y^2 x^3$, q = x;
 - (b) $f = y^2 x^3$, g = y;
- 4. Let V be a smooth irreducible variety over $k, f: V \to \mathbb{P}^1_k$ is a dominant morphism. Show that

$$[div(f)] = [f^{-1}(0)] - [f^{-1}(\infty)]$$

where $[div(f)] := \sum_{D} \nu_D(f)[D]$ and the sum runs over all codimension 1 subvarieties of V, $f^{-1}(x)$ denotes the scheme-theoretic preimage of x.

- 5. Compute $\operatorname{Pic}(\mathbb{A}^n_k)$, $\operatorname{Pic}(\mathbb{P}^n_k)$.
 - **Hint.** Identify Pic with the class group and use that $k[x_1, \ldots, x_n]$ is a UFD.
- 6. Compute $CH_0(\mathbb{P}^1_k)$ for algebraically closed field k, for arbitrary field k.
- 7. Compute $CH_0(\mathbb{A}^1_k)$ for algebraically closed field k, for arbitrary field k.
- 8. Which class in $\operatorname{Pic}(\mathbb{P}^1_k)$ has $T_{\mathbb{P}^1_k}$?
- 9. Given two curves C_1, C_2 in P_k^2 , what is the product $[C_1], [C_2]$ in the Chow ring of \mathbb{P}_k^2 ?

Let X be a variety, $Vect_X \subset Coh_X$ a full subcategory of locally free sheaves on X as a subcategory of coherent sheaves.

1. Let $F \in Coh_X$ and assume that F has two finite resolutions W_{\bullet}, V_{\bullet} in $Vect_X$:

$$0 \to W_n \to W_{n-1} \to \dots \to W_0 \to F \to 0, \quad 0 \to V_n \to V_{n-1} \to \dots \to V_0 \to F \to 0,$$

and an (objectwise) surjective morphism from $W_{\bullet} \to V_{\bullet}$.

Show that in $K_0(Vect_X)$ there is an equality $\sum (-1)^i [W_i] = \sum (-1)^i V_i$.

- 2. Given two resolutions $V_{\bullet}, V'_{\bullet}$ of F construct a third one together with surjective morphisms to $V_{\bullet}, V'_{\bullet}$.
- 3. Assume that every coherent sheaf F on X has a finite resolution by locally free sheaves. Show that the morphism $K_0(X) \to G_0(X)$ is an isomorphism.

Recall that a local Noetherian ring (R, \mathfrak{m}) is called regular, if its maximal ideal \mathfrak{m} is generated by dim R elements.

- 4. Show that a regular local ring is an integral domain.
 - **Hint.** Recall that the associated graded quotient with respect to the \mathfrak{m} -adic filtration grR is a polynomial algebra.
- 5. If $\mathfrak{m} = (x_1, \ldots, x_d)$ where $d = \dim R$, show that x_1, \ldots, x_d is a regular sequence.
- 6. Let M be a finitely generated module over a Noetherian local ring (R, \mathfrak{m}) . Show that if the projective dimension of M is $r < \infty$, multiplication by $x \in \mathfrak{m}$ is injective on M, then the projective dimension of M/(x)M is r+1.

Hint. Relate projective dimension with the Tor-dimension.

7. Show that if (R, \mathfrak{m}) is a regular local ring of dimension d, then it has global dimension equal to d.

Hint. It suffices to compute projective/Tor-dimension of R/\mathfrak{m} .

Recall that a scheme X is called regular, if every local ring $\mathcal{O}_{X,p}$ is a regular local ring.

- 8. Let X be a quasi-projective regular variety over a field k. Show that every coherent sheaf on X has a finite resolution by locally free sheaves.
- 9. Construct an exact sequence of coherent sheaves on $\mathbb{P}^1_k \times \mathbb{P}^1_k$:

$$0 \to p_1^* \mathcal{O}(-1) \otimes p_2^* \mathcal{O}(-1) \to \mathcal{O}_{\mathbb{P}^1_k \times \mathbb{P}^1_k} \to \mathcal{O}_{\Delta} \to 0,$$

where Δ is the diagonal closed subvariety \mathbb{P}^1 .

10. Show that $K_0(\mathbb{P}^1_k)$ is generated by $\mathcal{O}_{\mathbb{P}^1}, \mathcal{O}_{\mathbb{P}^1}(1)$ and compute $K_0(\mathbb{P}^1_k)$.

Hint. Use the Fourier-Moukai transform: given a vector bundle on \mathbb{P}^1 , pull it back to the $\mathbb{P}^1 \times \mathbb{P}^1$, multiply by the class of the diagonal and push it forward using the other projection.

1. Let X be a smooth variety, D_1 , D_2 are two Cartier divisors such that $D_1 \cap D_2$ is empty. Show that in $K_0(X)$ one has the relation

$$(\mathcal{O}_X - \mathcal{O}_X(-D_1)) \cdot (\mathcal{O}_X - \mathcal{O}_X(-D_2)) = 0.$$

- 2. Let X be an irreducible scheme.
 - (a) Given an exact sequence of vector bundles over X:

$$0 \to U \to V \to W \to 0$$

of ranks m, m+n, n, respectively, construct an isomorphism of line bundles $\Lambda^m U \otimes \Lambda^n W \cong \Lambda^{n+m} V$.

- (b) Construct a functorial morphism $det: K_0(X) \to Pic(X)$ that sends V of rank r to $\Lambda^r V$.
- 3. Show that if C is a smooth curve, then $K_0(C) = \mathbb{Z} \oplus Pic(C)$.

Hint. Use the localization sequence.

4. Let X be a smooth variety over k. Show that there are natural pullback maps $K_0(X) \to K_0(X_F)$, $CH^*(X) \to CH^*(X_F)$ for any field extension F/k, and that they are isomorphisms if F is purely transcendental over k.

Find examples of X and F for which these maps are not surjective.

Hint. Use the generic constancy and homotopy invariance properties.

5. Compute K_0 and CH^* of $\mathbb{P}^1_k \times \mathbb{P}^1_k$ as well as the class of the diagonal in these groups.

Hint. Use the localization sequence.

- 6. Let Q be a smooth hypersurface of degree 2 (quadric) in \mathbb{P}^3_k . Assuming that k is algebraically closed, compute $K_0(Q)$ and $\mathrm{CH}^*(Q)$ as rings.
- 7. Let X be the blow-up of \mathbb{P}^2_k at a rational point. Compute $CH^*(X)$ as a ring.

Hint. Use the adjunction formula to determine self-intersection of the exceptional divisor.

- 8. Let C be a smooth conic (a curve of degree 2 in \mathbb{P}^2).
 - (a) Show that if C has a 0-cycle of degree 1, then C is isomorphic to \mathbb{P}^1 . **Hint.** Define a morphism from C to \mathbb{P}^1 that becomes an isomorphism over \overline{k}
 - (b) Assume that C has no rational points. Compute $CH^*(C)$. **Hint.** Show that $Pic(X) \to Pic(X_K)$ is injective for any projective X and K/k.
 - (c) Show that any morphism between two conics without rational points must have an odd degree.

Hint. Look at the pushforward of the unit in K_0 and use the filtration on G_0 by dimension of the support.

Let A^* be an oriented cohomology theory of smooth varieties over a field k, the ring $A^*(\operatorname{Spec} k)$ is denoted A.

- 1. Check that the pullbacks and pushforwards for the theory A^* are morphisms of A-modules
- 2. Let $X = X_1 \coprod X_2$ in Sm_k . Show that $A^*(X) \cong A^*(X_1) \times A^*(X_2)$ as rings.
- 3. Let $F_{1,1} \in A[x,y]/(x^2,y^2)$ be the expression of $c_1(\mathcal{O}(1,1))$ in $A^*(\mathbb{P}^1 \times \mathbb{P}^1)$. Show that

$$F_{1,1} = x + y - [\mathbb{P}^1]_A xy$$

where
$$[\mathbb{P}^1]_A := p_*(1_{\mathbb{P}^1}), p : \mathbb{P}^1_k \to \operatorname{Spec} k$$
.

- 4. Let C be a smooth plane curve of degree d. Express the class $[C \to \mathbb{P}^2]_A$ in $A^*(\mathbb{P}^2)$ in terms of $1, z, z^2$ with coefficients in $(1, [\mathbb{P}^1]_A) \subset A$.
- 5. Compute the ring $A^*(X)$ where X is the blow-up of \mathbb{P}^2 at a rational point.
- 6. Let C be a smooth projective conic. Compute $A^*(C)$ assuming that A* satisfies generic constancy property.

Let A^* be an oriented cohomology theory of smooth varieties over a field k. Let X,Y be smooth projective varieties over k. An element in $A^{\dim X}(X\times Y)$ for an irreducible X, is called A-correspondence from X to Y.

1. Check that the following composition of correspondences is associative and contains a unit (the class in $A^{\dim X}(X \times X)$ for all smooth projective X): for $\alpha \in A^{\dim X}(X \times Y)$, $\beta \in A^{\dim Y}(Y \times Z)$

$$\beta \circ \alpha := (p_{XZ})_*(p_{XY}^*(\alpha) \cdot p_{YZ}^*(\beta)) \in A^{\dim X}(X \times Z)$$

where p_{ij} are projections from $X \times Y \times Z$.

The composition of correspondences defines the category $Corr_A(k)$ with Ob – smooth projective varieties over k and $Hom_{Corr_A}(X,Y) = \bigoplus_i A^{\dim X_i}(X_i \times Y)$ where the sum is taken over irreducible components of X.

2. Construct a functor $Sm_k \to Corr_A(k)$.

Recall that the unit of a (non-commutative) ring R decomposes as n orthogonal projectors if $1_R = \sum_{i=1}^n p_i$ and $p_i \circ p_j = p_j \circ p_i = 0$ if $i \neq j$, $p_i \circ p_i = p_i$ and $p_i \neq 0$ for all i.

- 3. Decompose $\mathrm{id}_X \in A^{\dim X}(X \times X)$ in 2 orthogonal projectors for $X = \mathbb{P}^1$ and arbitrary A^* .
- 4. Decompose $\mathrm{id}_X \in A^{\dim X}(X \times X)$ for $X = \mathbb{P}^n$ and $A^* = \mathrm{CH}^*$ into n+1 projectors p_i . For an arbitrary Y identify $\mathrm{Hom}_{Corr_{\mathrm{CH}}}(Y,X) \circ p_i$ with $\mathrm{CH}^i(Y)$.
- 5. Let $F_R \in \text{FGL}(R)$. Show that there exist a unique series $[-1] \cdot_F t \in t \cdot R[[t]]$ such that $F_R(t, [-1] \cdot_F t) = 0$.
- 6. Let $F_R \in \text{FGL}(R)$, and R is a \mathbb{Q} -algebra. Show that there exist a unique series $\eta(t) \in t + t^2 \mathbb{Q}[[t]]$ such that $\eta(F_R(x,y)) = \eta(x) + \eta(y)$.

Hint. Show that $\eta = \int (\partial_x F(x,y))|_{x=0,y=t}^{-1} dt$ works.

Let A be o.c.t. and let $\operatorname{PM}_A^{eff}(k)$ be the Karoubi envelope of Corr_A . and we have seen that the variety \mathbb{P}^1 decomposes into the direct sum $\mathbb{Z}_A(0) \oplus \mathbb{Z}_A(1)$ where $\mathbb{Z}_A(0) \cong M_A(\operatorname{Spec} k)$.

1. Check that PM_A^{eff} has a symmetric monoidal structure such that

$$M_A(X \times Y) \cong M_A(X) \otimes M_A(Y).$$

For an object M in PM_A^{eff} , $i \geq 0$, let M(i) denote $M \otimes \mathbb{Z}_A(1)^{\otimes i}$.

2. Let X be a smooth projective variety, V a vector bundle on X of rank r+1. Show that there is an isomorphism of motives $M_A(\mathbb{P}_X(V)) \cong \bigoplus_{i=0}^r M_A(X)(i)$.

Hint. Use the projective bundle formula and the Yoneda lemma.

Recall the *splitting principle*: for every vector bundle V over a smooth variety X there exist a morphism $f: Y \to X$ from a smooth variety Y such that f^*V decomposes as a direct sum of line bundles and $f^*: A^*(X) \to A^*(Y)$ is injective.

- 3. Let V, W be two rank 2 vector bundles. Compute $c_2^A(V \otimes W)$ as a polynomial in Chern classes of V and W.
- 4. Let V be vector bundle of rank r on X, show that $c_1^{\text{CH}}(V) = c_1^{\text{CH}}(\Lambda^r V)$.
- 5. Let $s: X \to V$ be the zero section of a rank r vector bundle. Show that $s^*s_*1_X = c_r^A(V)$ in $A^r(X)$.

Hint. Reduce to the case where $V \cong \oplus L_i$ and prove by induction on rank of V.

6. Using Chern classes construct a multiplicative operation (i.e. a natural transformations of presheaves of rings)

$$ch: K_0 \to CH^* \otimes \mathbb{Q}.$$

For a smooth projective variety X define its Chern numbers: given a partition $(1^{\times n_1}, 2^{\times n_2}, \dots)$ of $d = \dim X$, i.e. $d = \sum_{i=1}^{d} i \cdot n_i$, let

$$\deg \prod_{i=1}^{d} (c_i^{\mathrm{CH}}(T_X))^{n_i} \in \mathbb{Z}$$

be the corresponding Chern number.

7. Let $\pi: W \to \mathbb{P}^1$ be a projective morphism from a smooth variety W such that the fibers over two rational points x, y are smooth divisors W_x, W_y . Show that Chern numbers of W_x and W_y are the same. In other words, naive cobordism relation preserves Chern numbers.

- 1. Let $i: Z \to X$ be a regular embedding of smooth varieties, of codimension d and with the normal bundle N.
 - Show that $c_d([\mathcal{O}_Z]) = \pm (d-1)![Z]$ in Chow groups of X.
- 2. Let C be a smooth projective curve in \mathbb{P}^2 of degree d. Use the Riemann-Roch formula to express $ch(i_*([L]))$ where L is a line bundle on C. Deduce the classical Riemann-Roch formula from it, i.e. $\chi(L) = \deg L g + 1$.
- 3. (Borel-Serre identity)

Let X be a smooth projective variety of dimension d, let Td be the Todd class associated to the Chern character. Show that

$$ch(\sum_{r}(-1)^{r}[\Omega_{X/k}^{r}])\operatorname{Td}(T_{X/k})=c_{d}(T_{X/k}).$$

4. Let Q be a smooth projective quadric over an algebraically closed field k. Compute $A^*(Q)$ for any oriented cohomology theory A^* .

Hint. There exist a linear projective space inside Q whose complement is an affine bundle over a projective space.

1. Show that the class of the diagonal of the projective space $[\mathbb{P}^n \xrightarrow{\Delta} \mathbb{P}^n \times \mathbb{P}^n]_A$ in $A^n(\mathbb{P}^n \times \mathbb{P}^n)$ can be written as $z_1^n + z_2^n + \sum_{i,j \geq 1} c_{ij} z_1^i z_2^j$ where c_{ij} can be expressed as universal polynomials in the coefficients of the formal group law of A.

Hint. Identify the diagonal with the zero locus of a section of a vector bundle on $\mathbb{P}^n \times \mathbb{P}^n$.

2. Show that $[\mathbb{P}^k]_A$ can be expressed as the universal polynomial in coefficients of the formal group law of A.

Hint. Take the pushforward of the class of the diagonal from $\mathbb{P}^n \times \mathbb{P}^n$ to \mathbb{P}^n using Exercise ??.

3. For a smooth projective variety X let $h^{p,q}(X)$ denote the dimension of $H^q(\Omega_X^p)$. Show that $\deg c_n(T_X) = \sum_{p,q} (-1)^{p+q} h^{p,q}$.

Hint. Use the Riemann-Roch theorem for the Chern character and the Borel-Serre identity.

Note that in characteristic 0 using the Hodge theory one can derive then that $\deg c_n(T_X) = \chi_{top}(X)$.

For the next exercise one should assume the existence of the total Steenrod operation

$$St^{tot}: CH^*/p \to CH^*/p$$

which is the stable multiplicative operation with $\gamma_{St}(x) = x + x^p$.

4. Let X be a smooth projective variety of dimension n, Define the Segre classes $s_k(V)$ of a vector bundle V on X in Chow groups by the formula $\sum_{k\geq 0} s_k(V) t^k = (1 + \sum_{k>0} c_k(V) t^k)^{-1}.$ The number $s_n(X) := \deg(s_n(T_X))$ is called the Segre number of X.

Show that $s_n(X)$ is always divisible by 2 if n > 0.

Hint. Note that for p=2 one can show that $\mathrm{Td}_{St}(T_X)=\sum_{i>0}s_i(T_X)t^i$.

Define the topological filtration τ^{\bullet} on G_0 by $\tau^i G_0(X)$ generated by coherent sheafs with codimension of support greater or equal to i.

- 5. Check that c_i^{CH} vanishes on $\tau^{i+1}K_0$ and that it becomes an additive operation on $\tau^i K_0$.
- 6. Show that $gr_{\tau}^{i}K_{0}\otimes\mathbb{Q}$ is isomorphic to $\mathrm{CH}^{i}\otimes\mathbb{Q}$ as presheaves of abelian groups.

For a projective smooth variety X of dimension d let $S_d(X) \in \mathbb{Z}$ be the Chern number that is computed as $\deg(\sum_{i=1}^d \lambda_i^d)$ where λ_i are Chern roots of $-T_X$.

- 1. Show that if X, Y are smooth projective of positive (pure) dimensions d_X, d_Y , then $S_{d_X+d_Y}(X\times Y)=0$.
- 2. Show that if $d = p^n 1$, then $S_d(X)$ is always divisible by p. **Hint**. Identify $S_d(X)$ as a coefficient of some monomial of h([X]) where $h : \mathbb{L} \to \mathbb{Z}[b_1, b_2, \ldots]$. Check that this coefficient is zero by looking at $h \mod p$.
- 3. Let H be a smooth hypersurface of degree p in \mathbb{P}^{p^n} . Show that p^2 does not divide $S_{p^n-1}(H)$.
- 4. Using the double point relation show that the class of a conic C in Ω equals the class of a projective line.
- 5. Show that $[\mathbb{P}^2]$ and $[\mathbb{P}^1 \times \mathbb{P}^1]$ freely generate Ω^{-2} .

If A^* is an o.c.t., denote by PM_A the category of A-motives of smooth projective varieties. Note that if $p:A^*\to B^*$ is a morphism of o.c.t., then it induces a functor $PM_A\to PM_B$.

1. Show that the kernel of the morphism of (non-commutative) rings

$$\operatorname{End}(M_{\Omega}(X)) \to \operatorname{End}(M_{\operatorname{CH}}(X))$$

consists of nilpotents. Conclude that the functor $PM_{\Omega} \to PM_{CH}$ induces an isomorphism of the classes of isomorphisms of irreducible objects.

- Show that Ω*(X) is generated over L in degrees 0,1,..., dim X.
 Hint. Note that the generators of a graded L-module M can be chosen to be M/L<0M.
- 3. Show that the stable multiplicative operation $H: \Omega^* \to \mathrm{CH}^*[b_1, b_2, \ldots]$ becomes an isomorphism after tensoring it with \mathbb{Q} .

For the next exercise let $F_{K(n)}(x,y)$ be a formal group law over \mathbb{F}_p such that $p \cdot_{K(n)} x = x^{p^n}$. If n = 1 one can take $F_m = x + y + xy$ to be $F_{K(1)}$, for higher n we assume that $F_{K(n)}$ exists¹. The corresponding free o.c.t. $K(n)^* := \Omega^* \otimes_{\mathbb{L}} \mathbb{F}_p$ is called an algebraic n-th Morava K-theory.

4. Let Q be an odd-dimensional quadric. Assuming that Q has no 0-cycles of odd degree² show that there are no Tate summands in the Chow motive of Q.

Hint. Write explicitly all the projectors of Tate summands over \overline{k} and note that none of these can be defined over the base field.

5. Let Q be a quadric of dimension $2^n - 1$. Show that $M_{K(n)}(Q)$ contains a Tate summand.

Hint. It suffices to find elements $a, b \in K(n)(Q)$ such that $(\pi_Q)_*(a \cdot b) = 1$.

¹One can explicitly write a logarithm of a formal group law F defined over \mathbb{Z} such that F mod p is $F_{K(n)}$.

²which is equivalent to Q having no rational points by Springer's theorem