Vector calculus and numerical mathematics

Worksheet 7

Remark: "ODE" here means "Ordinary differential equation".

Problem 1: Linear ODEs

(a) Here is a **homogeneous** linear ODE (with constant coefficients),

$$f''(x) - 8f'(x) + 15f(x) = 0$$

Find the general solution, starting from the exponential ansatz $f(x) = e^{\lambda x}$.

(b) Proceed in a similar way with the following ODEs,

$$f''(x) - 6f'(x) + 58f(x) = 0,$$

$$f'''(x) + 4f''(x) + f'(x) - 6f(x) = 0.$$

(c) We now consider an **inhomogeneous** linear ODE,

$$f''(x) - 8f'(x) + 15f(x) = 15x^2 - 16x + 2.$$

Show that one particular solution is $f_0(x) = x^2$. Using the result of part (a), give the general solution of this inhomogeneous ODE.

Problem 2: Homogeneous linear ODEs

Find the general real-valued solutions f(x) of the following ODEs.

(a)
$$f'''(x) + 9f''(x) + 26f'(x) + 24f(x) = 0$$
,

- (b) f'''(x) 11f''(x) + 55f'(x) 125f(x) = 0,
- (c) f'''(x) 2f''(x) 5f'(x) + 10f(x) = 0,
- (d) f''(x) f(x) = 0,
- (e) f''(x) + f(x) = 0.

Hint: In all cases (a–e), the exponential ansatz $f(x) = e^{\lambda x}$ leads to an algebraic equation for $\lambda \in \mathbb{C}$. In cases (a–c), this equation is third-order: one of its three zeros can be guessed to be $\lambda_1 = -2$ (a), $\lambda_1 = 5$ (b) and $\lambda_1 = 2$ (c); the remaining two zeros λ_2 and λ_3 are then obtained via polynomial division. Cases (d) and (e) are (almost) trivial.

Problem 3: Example: Harmonic oscillator

The position x of a point mass, moving on the x-axis, is a function x(t) of time t. The derivatives $\dot{x}(t)$ and $\ddot{x}(t)$, respectively, yield the instantaneous velocity and acceleration. As this mass is attached to a spring (with spring constant k > 0), it experiences at time t the restoring force $F_{\rm r}(t) = -kx(t)$. In addition, there is a frictional force $F_{\rm f}(t) = -\gamma \dot{x}(t)$ (with a damping constant $\gamma > 0$) plus an external driving force $F_{\rm ext}(t) = F_0 \cos(\Omega t)$ (with given amplitude F_0 and given frequency Ω). The resulting equation of motion reads

$$m\ddot{x}(t) = F_{\rm r}(t) + F_{\rm f}(t) + F_{\rm ext}(t).$$

Obviously, this is an **inhomogeneous** linear ODE for the unknown function x(t),

$$m\ddot{x}(t) + \gamma \,\dot{x}(t) + k \,x(t) = F_0 \cos(\Omega t).$$

(a) Find the general solution x(t) of the corresponding **homogeneous** linear ODE,

$$m\ddot{x}(t) + \gamma \,\dot{x}(t) + k \,x(t) = 0.$$

(b) By **physical intuition**, find a particular solution of the **inhomogeneous** ODE. What is the resulting general solution of the **inhomogeneous** ODE?

Problem 4: Laplacian (operator)

(a) For a differentiable scalar field $g(\mathbf{r}) = g(x, y, z)$, show that

$$abla \cdot \left[
abla g(\mathbf{r})
ight] \; = \;
abla^2 g(\mathbf{r}),$$

where the **Laplacian** ∇^2 in cartesian coordinates reads $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

(b) Evaluate the Laplacian $\nabla^2 g(\mathbf{r})$ for the following scalar fields (where $A, B, C, D, E, F, R, \alpha, \beta$ are constants).

$$g_{1}(\mathbf{r}) = Ax^{2} + By^{2} - (A+B)z^{2} + Dx + Ey + Fz + C,$$

$$g_{2}(\mathbf{r}) = A\sin(\alpha x)\sin(\beta y)e^{-\gamma z}, \qquad \gamma = \sqrt{\alpha^{2} + \beta^{2}},$$

$$g_{3}(\mathbf{r}) = \frac{A}{\sqrt{x^{2} + y^{2} + z^{2}}} \equiv A(x^{2} + y^{2} + z^{2})^{-1/2} \qquad (\mathbf{r} \neq \mathbf{0}),$$

$$g_{4}(\mathbf{r}) = (Ax + By + Cz)(x^{2} + y^{2} + z^{2})^{-3/2} \qquad (\mathbf{r} \neq \mathbf{0}),$$

$$g_{5}(\mathbf{r}) = \frac{Q}{4\pi\epsilon_{0}} \begin{cases} \frac{3R^{2} - r^{2}}{2R^{3}} & (r \leq R), \\ \frac{1}{r} & (r > R). \end{cases}$$

(c) Use the result of part (b) for $g_5(\mathbf{r})$, to verify the identity

$$\nabla^2 \frac{1}{|\mathbf{r} - \mathbf{r}_0|} = -4\pi \,\delta(\mathbf{r} - \mathbf{r}_0)$$