
Worksheet 8

Problem 8.1: Separable-variables ODEs

(a) Writing formally y′(x) = dy
dx

and y(x) = y, we obtain

1

y2
dy = ax dx, −1

y
+ C1 =

ax2

2
+ C2, y(x) =

2

C − ax2
,

where C = 2(C1 − C2). Check:

y′(x) =
d

dx

2

C − ax2
= − 2 · (−2ax)

(C − ax2)2
= ax

4

(C − ax2)2
= ax y(x)2. ˇ

(b) Writing formally y′(x) = dy
dx

and y(x) = y, we obtain

y dy = x2 dx,
y2

2
+ C1 =

x3

3
+ C2, y(x) = ±

√
2

3
x3 + C,

where C = 2(C2 − C1). Check:

y′(x) = ± d

dx

(
2

3
x3 + C

)1/2

= ±1

2

(
2

3
x3 + C

)−1/2
2x2 =

x2

y(x)
. ˇ

(c) This ODE seems to be not a separable-variables one.
However, it is an (inhomogeneous) linear ODE,

y′(x) − y(x) = −x2,

with inhomogeneity −x2. One particular solution can be found by guessing,

ypart(x) = x2 + 2x + 2.

Then, the general solution is obtained by adding to this particular solution the
general solution of the corresponding homogeneous linear ODE y′(x)− y(x) = 0,

ygen(x) = (x2 + 2x + 2) + Aex (A ∈ R).

(d) Writing formally y′(x) = dy
dx

and y(x) = y, we obtain

1

1 + y2
dy = 4x3 dx, arctan(y) + C1 = x4 + C2, y(x) = tan(x4 + C),

where C = C2 − C1, and we have used the first hint. Check:

y′(x) ≡ d

dx
tan(x4 + C) =

1

cos2(x4 + C)
4x3 = 4x3

(
1 + tan2(x4 + C)

)
. ˇ

(e) Writing formally y′(x) = dy
dx

and y(x) = y, we obtain

cos y dy = 6x dx, sin y + C1 = 3x2 + C2, y(x) = arcsin(3x2 + C),

where C = C2 − C1. Check: Using the second hint, we get

y′(x) ≡ d

dx
arcsin(3x2 + C) =

1√
1− (3x2 + C)2

6x.

Since y = arcsin(3x2 + C), we have 3x2 + C = sin y, and therefore

y′(x) =
1√

1− (sin y)2
6x =

6x

cos y
. ˇ
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(f) Writing formally y′(x) = dy
dx

and y(x) = y, we obtain

dy

sin y
= dx.

We integrate the LHS, using the identity sin y = 2 sin y
2

cos y
2
,

∫
dy

1

sin y
=

∫
dy

1

2 sin y
2

cos y
2

=

∫
dy

1
2

1
(cos y

2
)2

tan y
2

=

∫
dy

t′(y)

t(y)
= ln

∣∣t(y)
∣∣+ C1,

where t(y) = tan y
2
, with the derivative t′(y) = 1

2
1

(cos y
2
)2

.

Integrating the RHS,
∫

dx = x+ C2 and setting C2 − C1 = C, we obtain

ln
∣∣∣ tan

y

2

∣∣∣ = x + C.

Resolving for y, we eventually find1

y(x) = 2 arctan
(
± ex+C

)
= 2 arctan

(
aex
)

(a = ±eC ∈ R).

Check: Since d
du

arctanu = 1
1+u2

, the chain rule yields

y′(x) = 2
aex

1 + (aex)2
= 2

tan y(x)
2

1 +
(

tan y(x)
2

)2
= 2 sin

y(x)

2
cos

y(x)

2
≡ sin

[
y(x)

]
.

1Notice that arctan(x) is the inverse function of tan(y):

arctan(A) = B ⇔ tan(B) = A.

2



Problem 8.2

Problem 8.3

(a) This is a simple exercise in partial differentiation, see section 9.1.5.

(b) This is a simple volume integral, see section 9.1.5.

Problem 8.4

Using the ansatz T (x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F in the given PDE,

∇2T (x, y) ≡
(
∂2

∂x2
+

∂2

∂y2

)
= −s0

λ
,

we find a condition on the values of A and C,

2(A+ C) = −s0
λ
. (1)

Holding the rim of the disk at T = T0 corresponds to the (Dirichlet) boundary condition

T (x, y) = T0 (for all x, y with x2 + y2 = R2). (2)

Setting B = D = E = 0, we see that conditions (1) and (2) can be satisfied by the choice

A = C = − s0
4λ
, F = T0 +

s0
4λ

R2 (B = D = E = 0),

which turns the above ansatz into the (unique!) solution

T (x, y) = T0 +
s0
4λ

[
R2 −

(
x2 + y2

)]
.

Remark: For completeness, we derive the given PDE (this is not part of Problem 8.4):
In the medium, density ρ and current density J of heat satisfy the continuity equation

∂

∂t
ρ(r, t) + ∇ · J(r, t) = s(r, t).

Using for ρ the specific-heat relation

ρ(r, t) = c µ
[
T (r, t)− T1

]
(with some reference temperature T1), and for J the heat conduction law,

J(r, t) = −λ∇T (r, t),

we obtain a PDE for the temperature distribution T (r, t) in the medium,

c µ
∂

∂t
T (r, t) − λ∇2T (r, t) = s(r, t).

In the case s(r, t) = s(r), steady-state equilibrium will be reached after some time, when
∂T
∂t

= 0. The resulting static distribution T (r, t) = T (r) will satisfy the given PDE,

∇2T (r) = −1

λ
s(r).
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Worksheet 9

Problem 9.1: Finite difference method (FDM) for a PDE

(a) In case of the disk Σ1, the exact solution is obtained in Problem 4 of Worksheet 8,
when we choose T0 = 0 and s0

λ
= S there,

T (x, y) =
S

4

[
R2 − (x2 + y2)

]
.

(It is easy to check that this is really the solution !)

(b) The five regions Σ1, ...,Σ5 in the xy-plane are shown in Fig. 1 (Σ3 is shown twice),
along with a properly chosen mesh of discrete points in each case.

x

y

Σ1
Σ2 Σ3

Σ3 Σ4 Σ5

Figure 1: Upper row: Σ1 (with h = R
5

√
10), Σ2 (with h = D

4
), Σ3 (with h = L

2
),

Lower row: Σ3 (once more, but with h = L
4
), Σ4 (with h = L

3
), and Σ5, (with h = L

4
).

The mesh points inside Σ2 are highlighted in red, the ones on the rim ∂Σ2 in blue.

Remark 1: Each panel in Fig. 1 has a certain number N of mesh points inside Σn
(marked in red in the case of Σ2) plus a considerable number of extra mesh points
on the rim ∂Σn (marked in blue in the case of ∂Σ2).

Remark 2: The four different panels with Σ2,Σ3,Σ4 all belong to the same physical
situation (when we choose D = L

√
2), but to different levels of approximation: With

N = 5, 1, 9, or 4 mesh points inside Σn (the choice N = 1 being a poor one).
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(c) In the lecture (section 12.2 ”Finite difference methods”), we have obtained Eq. (448)
(”a set of iteration equations”) which in the present notation reads

Tn,m =
1

4

[
Tn+1,m + Tn−1,m + Tn,m+1 + Tn,m−1

]
+
h2

4
Sn,m .

In the present case S(x, y) = S is a constant, Sn,m = S, independently of n and m.
In further simplified notation, we may write

Tn,m =
T→ + T← + T↑ + T↓

4
+
h2

4
S , (3)

where ”T→” means the temperature at the next-neighbor mesh point to the right
(”→”) of rn,m, etc.

Iteration method: Using approximate values T→, T←, T↑, T↓ on the RHS of
Eq. (3), the LHS should yield improved temperatures Tn,m.

As an example, we here pick the square Σ2 (second panel in upper row of Fig. 1):
Given the point mesh of Fig. 1, we have 5 points inside Σ2 (marked in red) plus 8
ones on the rim ∂Σ2 (marked in blue). For short, we re-label the ”red points” rn,m
as follows

r0,1
r−1,0 r0,0 r1,0

r0,−1

=
r2

r3 r5 r1
r4

While the ”blue points” are held at T = 0, we approximate the unknown tempera-
tures Tn = T (rn) at the ”red points” (n = 1, 2, 3, 4, 5) by guessed values T

(0)
n ≈ Tn.

For example, choosing ”heating strength” S and step size h as

S = 100, h = 1,

a proper choice of these ”initial guess” (or zeroth-order) temperatures T
(0)
n could be

0

0 T
(0)
2 0

0 T
(0)
3 T

(0)
5 T

(0)
1 0

0 T
(0)
4 0
0

=

0
0 50 0

0 50 80 50 0
0 50 0

0

Using these trial values on the RHS of Eq. (3), we find the improved temperatures

T
(1)
1 =

0 + 0 + T
(0)
5 + 0

4
+

100

4
= 45,

T
(1)
2 =

0 + 0 + 0 + T
(0)
5

4
+

100

4
= 45,

T
(1)
3 =

T
(0)
5 + 0 + 0 + 0

4
+

100

4
= 45,

T
(1)
4 =

0 + T
(0)
5 + 0 + 0

4
+

100

4
= 45,

T
(1)
5 =

T
(0)
1 + T

(0)
2 + T

(0)
3 + T

(0)
4

4
+

100

4
= 75.
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These values, obtained upon the first iteration, comprise our first-order result,

0

0 T
(1)
2 0

0 T
(1)
3 T

(1)
5 T

(1)
1 0

0 T
(1)
4 0
0

=

0
0 45 0

0 45 75 45 0
0 45 0

0

A second iteration, using these first-order temperatures T
(1)
n as new input on the

RHS of Eq. (3), yields an even better set of second-order temperatures

T
(2)
1 = T

(2)
2 = T

(2)
3 = T

(2)
4 = 43.75, T

(2)
5 = 70.

One can (quite easily!) show that, after an infinite number of iterations, this pro-
cedure will converge towards the solution

T1 = T2 = T3 = T4 =
5

12
S ≈ 41.67, T5 =

2

3
S ≈ 66.67.

Problem 9.2:

(a) This is an inhomogeneous linear ODE, with the general solution

f inh
gen(x) = fhom

gen (x) + f inh
part(x)

=
[
A cos 7x+B sin 7x

]
e−4x − 1

5
,

where fhom
gen (x) can be found from an exponential ansatz f(x) = eλx,

λ2 + 8λ+ 65 = 0, λ1,2 =
−8±

√
64− 240

2
=
−8± 14i

2
= −4± 7i,

and f inh
part(x) = −1

5
(= const.) can be guessed.

(b) This is another inhomogeneous linear ODE, with the general solution

f inh
gen(x) = fhom

gen (x) + f inh
part(x)

=
[
A+Be−8x

]
− 65

8
x,

where fhom
gen (x) can be found from an exponential ansatz f(x) = eλx,

λ2 + 8λ = 0, λ1,2 ∈ {0,−8},

and f inh
part(x) = −65

8
x can be guessed.

(c) f ′′(x) + 8f ′(x)2 = 0 is equivalent to a non-linear 1st-order ODE for g(x) = f ′(x),

g′(x) = −8g(x)2,
dy

dx
= −8y2, − 1

y2
dy = 8 dx,

1

y
= 8x+ C,

with the solution

g(x) =
1

8x+ C
≡ f ′(x)

⇒ f(x) =
1

8
ln(8x+ C) + D (C,D ∈ R).
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Problem 9.3: Average Temperature

(a) With VΩ = π
2
R2H and T (r) ≡ T (x, y, z) = T0

x
R

, we have〈
T (r)

〉
r∈Ω

=
1

VΩ

∫
Ω

d3r T (r)

=
1

π
2
R2H

T0
R

∫ H

0

dz

∫ R

−R
dy

∫ √R2−y2

0

dx x

=
2T0
πR3H

∫ H

0

dz︸ ︷︷ ︸
=H

∫ R

−R
dy

[
x2

2

]x=√R2−y2

x=0

=
2T0
πR3

∫ R

−R
dy

[
R2 − y2

2

]
=

2T0
πR3

· 1

2

[
R2y − y3

3

]y=R
y=−R

=
2T0
πR3

· 1

2

[
2R3 − 2R3

3

]
=

4

3π
T0 ≈ 0.424T0.

(b) In cylindrical coordinates, with T̃ (s, φ, z) = T0
s cosφ
R

and the Jacobian J(s, φ, z) = s,

〈
T (r)

〉
r∈Ω

=
1

VΩ

∫ H

0

dz

∫ R

0

ds

∫ π/2

−π/2
dφJ(s, φ, z) T̃ (s, φ, z)

=
1

π
2
R2H

T0
R

∫ H

0

dz︸ ︷︷ ︸
=H

∫ R

0

ds

∫ π/2

−π/2
dφ s2 cosφ

=
2T0
πR3

(∫ R

0

ds s2
)(∫ π/2

−π/2
dφ cosφ

)
=

2T0
πR3

· R
3

3
· 2 =

4

3π
T0.

Notice: As the limits of each inner integral are fixed numbers, not depending on
any of the respective outer integration variables, this triple integral factorises.
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