Worksheet 8

Problem 8.1: Separable-variables ODEs

(a) Writing formally 3/(z) =

= and y(r) = y, we obtain

1 1 ax? 2
) dy ax dz, ~ + 3 + Cy, y(x) Can?’
where C' = 2(C} — C3). Check:
, ! 2 2 (—2ax) 4 B 5 .
yiz) = de C—a2? ~ (C—aa?? “r (C — az?)? ary(x)”

(b) Writing formally y/(x) = g—z and y(z) = y, we obtain

= o % B e
ydy = z”dz, 34‘01 34—02, y(x)

/2
= + §ZIZ’3 + C,
where C' = 2(Cy — C). Check:

d 9 1/2 1 9 —-1/2 2
T

This ODE seems to be not a separable-variables one.
However, it is an (inhomogeneous) linear ODE,
2

_aj,

y'(x) — y(x)
with inhomogeneity —z2. One particular solution can be found by guessing,
Ypart(T) = 2% + 27 + 2,

Then, the general solution is obtained by adding to this particular solution the
general solution of the corresponding homogeneous linear ODE ¢/(z) — y(z) = 0,

Ygon(T) = (2% + 22 + 2) + Ae”
(d) Writing formally ¢/ (z) = %

o and y(z) = y, we obtain

(A eR).

ey dy = 42°du, arctan(y) + Cy
Y

z* + Oy, y(r) = tan(z* + O),

where C' = Cy — (1, and we have used the first hint. Check:
y'(x)

d 4 1 3 3 27,4 ~

Writing formally ¢/(z) = % and y(z) = y, we obtain
cosydy = 6xdx, siny +C; = 32% + Oy, y(r) = arcsin(32* + C),
where C' = Cy — (. Check: Using the second hint, we get

y'(z) =

d 1

— arcsin(3z2 4+ C) = 6z
dz ( ) V1— (322 + C)2
Since y = arcsin(3z? + C), we have 322 + C = siny, and therefore

1 6x
y(r) = ——=6

r = .
1 — (siny)? cos Y
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(f) Writing formally y/(z) = £ and y(z) = y, we obtain
d
Y = da.

sin y

We integrate the LHS, using the identity siny = 2sin § cos £,

11
1 1 2 (cos 1)2
d = d —_—mmm = d 2
/ysiny /y2sin%cos% /y tan &
t/
= [ay5Y — )+

t(y)

where ¢(y) = tan £, with the derivative t'(y) = 1 1.
Yy 2 2 (cos )

Integrating the RHS, [dz = z + Cy and setting Cy — C} = C, we obtain

ln‘tan%‘ =z + C.
Resolving for y, we eventually find!
y(z) = 2 arctan (£e""¢) = 2 arctan (ae”) (a = £e° € R).

Check: Since % arctan u = ﬁ, the chain rule yields

tan @

Vi = e T AT (tan 11
y(z) M = sin [y(a:)]

2 sin ——=
sm2c 5

!Notice that arctan(z) is the inverse function of tan(y):
arctan(4) = B & tan(B) = A.



Problem 8.2

Problem 8.3

(a) This is a simple exercise in partial differentiation, see section 9.1.5.

(b) This is a simple volume integral, see section 9.1.5.

Problem 8.4

Using the ansatz T(x,y) = Az?> + Bay + Cy* + Dx + Ey + F in the given PDE,

0? 0? s
2T = (—+ =) = -2
V (I’, y) (axz + ayQ) )\ 9
we find a condition on the values of A and C,
20A+C) = -2, (1)

A
Holding the rim of the disk at 7" = T} corresponds to the (Dirichlet) boundary condition
T(x,y) = To (for all z,y with 2* + y* = R?). (2)
Setting B = D = E = 0, we see that conditions (1) and (2) can be satisfied by the choice
S0

— —_ — ﬂ 2 — — =
A=C=-3, F=Th+3 R (B=D=E=0),

which turns the above ansatz into the (unique!) solution

S
T(z,y) = To+ ﬁ [32 — (" + yQ)]‘

Remark: For completeness, we derive the given PDE (this is not part of Problem 8.4):
In the medium, density p and current density J of heat satisfy the continuity equation

%p(r,t) + V- J(r,t) = s(r,t).
Using for p the specific-heat relation
p(r,t) = cp[T(r,t) —T]
(with some reference temperature 77), and for J the heat conduction law,
J(r,t) = =AVT(r,1),
we obtain a PDE for the temperature distribution 7'(r,t) in the medium,
cp%T(r,t) — AVT(r,t) = s(r,t).

In the case s(r,t) = s(r), steady-state equilibrium will be reached after some time, when
9L = 0. The resulting static distribution T'(r,t) = T'(r) will satisfy the given PDE,

VT (r) = —%s(r).



Worksheet 9

Problem 9.1: Finite difference method (FDM) for a PDE

(a) In case of the disk Xy, the exact solution is obtained in Problem 4 of Worksheet 8,
when we choose Tp = 0 and 3> = S there,

T(ey) = 2B~ @ +9?)].

(It is easy to check that this is really the solution !)

(b) The five regions Xy, ..., X5 in the zy-plane are shown in Fig. 1 (X; is shown twice),
along with a properly chosen mesh of discrete points in each case.
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Figure 1: Upper row: X (with h = £4/10), X, (with h = £), X5 (with h = £),
Lower row: Y5 (once more, but with h = £), £y (with h = £), and s, (with h = £).
The mesh points inside Y, are highlighted in red, the ones on the rim 025 in blue.

Remark 1: Each panel in Fig. 1 has a certain number N of mesh points inside X,
(marked in red in the case of Xy) plus a considerable number of extra mesh points
on the rim 0%, (marked in blue in the case of 0X3).

Remark 2: The four different panels with 35, X5, ) all belong to the same physical
situation (when we choose D = L+/2), but to different levels of approximation: With
N =5,1,9, or 4 mesh points inside X, (the choice N = 1 being a poor one).



(c) In the lecture (section 12.2 " Finite difference methods”), we have obtained Eq. (448)
("a set of iteration equations”) which in the present notation reads

1 h?
Tn,m = Z Tn+1,m + Tnfl,m + Tn,erl + Tn,mfl + Z Sn,m .

In the present case S(x,y) = S is a constant, S, ,,, = S, independently of n and m.
In further simplified notation, we may write

T T T T h?
Tn,m: S %4—’_ T+¢+ZS7 (3)

7

where "T_,” means the temperature at the next-neighbor mesh point to the right
("—=") of 1y m, ete.

Iteration method: Using approximate values T',, T._, T}, T on the RHS of
Eq. (3), the LHS should yield improved temperatures T, ,,,.

As an example, we here pick the square Xy (second panel in upper row of Fig. 1):
Given the point mesh of Fig. 1, we have 5 points inside X5 (marked in red) plus 8
ones on the rim 0%, (marked in blue). For short, we re-label the "red points” r,,

as follows
o1 Iy
.10 Too Ti1p0 = rs rs Iy
o -1 ry

While the ”blue points” are held at T' = 0, we approximate the unknown tempera-
tures T, = T'(r,,) at the "red points” (n = 1,2,3,4,5) by guessed values ' ~ T,
For example, choosing ”heating strength” S and step size h as

S =100, h =1,

a proper choice of these ”initial guess” (or zeroth-order) temperatures T could be
O(J 0
o 7V o 0 50 0
o 7\ 7 7 o9 = 0 50 80 50 0
0 T4(0) 0 0 50 0
0 0

Using these trial values on the RHS of Eq. (3), we find the improved temperatures

0+0+79 40 100
T — 5 — — 45
1 4 + 4 b

0+0+0+T9 100
T2(1) _ + —i—4 + 15 + - = 45,

)

W T 40+0+0 100
W = — =45
3 4 + 4 ’

0)
T 1
T4(1) _ 0+7;7"+0+0 n 00 _ 45,
4 4

W 7O+ 7O+ 70 4+ 7 100

T = . + =T



These values, obtained upon the first iteration, comprise our first-order result,

0 0
o 7V o 0 45 0
oV T g = 0 45 75 45 0
0 T4(1) 0 0 45 O
0 0

A second iteration, using these first-order temperatures TV as new input on the
RHS of Eq. (3), yields an even better set of second-order temperatures

Y =1% =17 = 17 = 43.75, ¥ = 0.

One can (quite easily!) show that, after an infinite number of iterations, this pro-
cedure will converge towards the solution

)
T = T2 = T3 =1, = ES ~ 4167, T5 = S =~ 66.67.
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Problem 9.2:

(a) This is an inhomogeneous linear ODE, with the general solution
(@) = faa' (@) + fran(@)

1
= |Acos7x + BsinTz|e ™ — 5

hom

Az
gen )

where () can be found from an exponential ansatz f(z) =e

—8+v64 —240 -8+ 14i
A4 8AL65=0, A= > - — L 447
and finh (z) = —% (= const.) can be guessed.

(b) This is another inhomogeneous linear ODE, with the general solution

e (@) = fa' (@) + foan(@)
65
= [A + Be_Sm} - —u,
8
where f2o"(z) can be found from an exponential ansatz f(z) = e*",
M 48\ =0, M2 € {0, -8},
and finh (z) = =% 2 can be guessed.

(c) f"(z) +8f'(x)* = 0 is equivalent to a non-linear 1st-order ODE for g(x) = f'(x),
dy 1 1
'(z) = —8g(x)? 2 = 8y ——dy =8d — =8 +C
g'(z) g(@)”, - Yy, 2 T, S =8+C

with the solution

= flz) = éln(Sx—i—C) +D  (C.DeR).



Problem 9.3: Average Temperature

(a) With Vo = ZR’°H and T(r) = T(z,y,z) = Ty %, we have

1

<T(r)>reg - V—Q &r7(r)

= ”RQH R/ dz/ dy/
2T, 2] =VE
7rR3H/ dz/ dy{ ]

2T0 R |:}%2 -y :|

TR3
2T 1{ }
= =2 .- Ry——
7TR3 2 3 y=—R
2Ty, 1[. ., 2R? 4
= 20 2R - | = Ty &~ 04247,
7R3 2{ 3] 3r 0 0

(b) In cylindrical coordinates, with T(s, ¢, z) = Tp2<2¢ and the Jacobian J(s, ¢, z) = s,

<T(r)>reg S dz/ ds/_mdqu s,6,2) T(s,,2)
= ”RQH R/ dz/ ds/ﬂ/quﬁs cos ¢
= j—%(/{) dssQ) (/_://Zd¢cos¢> :%-%3'2=%T0-

Notice: As the limits of each inner integral are fixed numbers, not depending on
any of the respective outer integration variables, this triple integral factorises.




