Vector calculus and numerical mathematics

Worksheet 4

Problem 1: Double integral, area, volume, and average value

For the region $\Omega = \{(x,y) \mid 0 \le x \le a, \ 0 \le y \le b\}$ in the *xy*-plane, with two constants a > 0 and b > 0, evaluate the double integral

$$I = \int_{\Omega} \mathrm{d}^2 r \, f(\mathbf{r})$$

for the following functions, and give a geometrical interpretation.

- (a) $f(\mathbf{r}) \equiv f(x, y) = 1$,
- (b) $f(\mathbf{r}) \equiv f(x,y) = c$, with a constant c > 0,
- (c) $f(\mathbf{r}) \equiv f(x,y) = \frac{x}{1+y}$.

Problem 2: Gradient

Which ones of these vector fields are gradients of a scalar field?

(a)
$$\mathbf{v}(\mathbf{r}) = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix}$$
, (b) $\mathbf{p}(\mathbf{r}) = \begin{pmatrix} y \\ x \\ z \end{pmatrix}$, (c) $\mathbf{q}(\mathbf{r}) = \begin{pmatrix} xy \\ yz \\ zx \end{pmatrix}$.

Occasionally, can you guess the explicit expression for such a scalar field?

Problem 3: Curl

Evaluate the curl

$$\nabla \times \mathbf{B}(\mathbf{r}) = \begin{pmatrix} \partial_2 B_3 - \partial_3 B_2 \\ \partial_3 B_1 - \partial_1 B_3 \\ \partial_1 B_2 - \partial_2 B_1 \end{pmatrix}$$

(short-hand notation: $\partial_n f := \frac{\partial f}{\partial x_n}$, $x_1 := x, x_2 := y, x_3 := z$) of the following vector fields,

(a)
$$\mathbf{B}(\mathbf{r}) = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$
, (b) $\mathbf{B}(\mathbf{r}) = \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} \equiv \begin{pmatrix} -\frac{y}{x^2 + y^2} \\ \frac{x}{x^2 + y^2} \\ 0 \end{pmatrix}$.

Problme 4: Line integrals

Consider the 2D vector field $\mathbf{F}(\mathbf{r})$ and the 2D vector function $\mathbf{r}(\phi)$,

$$\mathbf{F}(\mathbf{r}) = \left(\begin{array}{c} F_1(x,y) \\ F_2(x,y) \end{array} \right) = \left(\begin{array}{c} \frac{y}{x^2 + y^2} \\ \frac{x}{x^2 + y^2} \end{array} \right), \qquad \mathbf{r}(\phi) = \left(\begin{array}{c} x(\phi) \\ y(\phi) \end{array} \right) = \left(\begin{array}{c} R\cos\phi \\ R\sin\phi \end{array} \right).$$

(a) Compute the vectors $\mathbf{F}(\mathbf{r})$ for the eight points

$$\mathbf{r} = (x|y) = (1|0), (2|0), (0|1), (1|1), (2|1), (0|2), (1|2), (2|2),$$

and draw them as arrows at the coresponding positions of the xy-plane.

(b) In the diagram of part (a), sketch the curve Γ_1

$$\Gamma_1 = \left\{ \mathbf{r}(\phi) \middle| 0 \le \phi \le \frac{\pi}{4} \right\}, \qquad R = 2.$$

Decide qualitatively whether the line integral $\int_{\Gamma_1} d\mathbf{r} \cdot \mathbf{F}(\mathbf{r})$ is > 0, = 0, or < 0.

(c) Evaluate this line integral exactly, using the formula from the lecture,

$$\int_{\Gamma_1} d\mathbf{r} \cdot \mathbf{F}(\mathbf{r}) = \int_0^{\pi/4} d\phi \left[\dot{\mathbf{r}}(\phi) \cdot \mathbf{F}(\mathbf{r}(\phi)) \right].$$

(d) Repeat parts (b) and (c) for the curve

$$\Gamma_2 = \left\{ \mathbf{r}(u) \mid 1 \le u \le 2 \right\}, \quad \mathbf{r}(u) = \left(\begin{array}{c} u \\ u \end{array} \right).$$

(e) Repeat parts (b) and (c) for the curve

$$\Gamma_3 = \left\{ \mathbf{r}(u) \middle| \frac{1}{2} \le u \le 2 \right\}, \quad \mathbf{r}(u) = \left(\begin{array}{c} u \\ 1/u \end{array} \right).$$

Problem 5: Line integrals (II)

(a) Show that the vector field

$$\mathbf{G}(\mathbf{r}) = \left(\begin{array}{c} x^2 + y^2 \\ 2xy \end{array}\right)$$

is the gradient of the 2D scalar field $f(\mathbf{r}) = \frac{1}{3}x^3 + xy^2$.

(b) Evaluate the line integrals $\int_{\Gamma} d\mathbf{r} \cdot \mathbf{G}(\mathbf{r})$ of the vector field $\mathbf{G}(\mathbf{r})$ over the three curves $\Gamma = {\mathbf{r}(u) \mid u \in [0,1]}$ parametrized by $\mathbf{r}(u) = \binom{x(u)}{y(u)}$,

(i)
$$\mathbf{r}(u) = \begin{pmatrix} 3u^2 \\ 2u^3 \end{pmatrix}$$
, (ii) $\mathbf{r}(u) = \begin{pmatrix} -6u^3 \\ 5u \end{pmatrix}$, (iii) $\mathbf{r}(u) = \begin{pmatrix} 3u \\ 8u^2 \end{pmatrix}$.

(c) What are the values of the scalar field $f(\mathbf{r})$ at the starting and end points of these three curves? Compare with the line integrals from part (b)!

2