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1 CANONICAL QUANTIZATION 1

Lecture 1

1 Canonical Quantization

Aim of this section is to make a connection of QFT to Quantum Mechanics and explain QFT

methods on a simple example:

1.1 Anharmonic Oscillator as a 0 + 1-dimensional quantum field theory

Consider the following system:

• Lagrangian

L =
1

2
mẋ2 − V (x) =

1

2
mẋ2 − 1

2
ω2x2 − λ

4!
x4 (1.1)

In the following m 7→ 1; Here 4! = 4 · 3 · 2 · 1 = 24

• Euler-Lagrange Eq. (= Newton’s II Law)

d

dt

∂L

∂ẋ
=
∂L

∂x
⇔ ẍ = −ω2x− λ

3!
x3 (1.2)

• Canonically conjugated momentum

p =
∂L

∂ẋ
= ẋ (1.3)

• Hamiltonian

H = pẋ− L =
1

2
p2 +

ω2

2
x2 +

λ

4!
x4 (1.4)

Change of notation

x 7→ φ , p 7→ π !! π /=3.14 . . . (1.5)

so that

L =
1

2
φ̇2 − 1

2
ω2φ2 − λ

4!
φ4 H =

1

2
π2 +

1

2
ω2φ2 +

λ

4!
φ4 (1.6)

— Lagrangian (Hamiltonian) of a 0+1 dimensional scalar quantum field theory

• so far everything classical. . .

Canonical Quantization

The standard procedure, usually called “Canonical Quantization”:

• Promote φ and π to operators in Hilbert space of quantum states

φ 7→ φ̂ , π 7→ π̂ (1.7)

• Postulate canonical commutation relations

[φ̂, π̂] = i c = ~ = 1 (1.8)
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• The state, say |1〉, is described by the wave function (WF), in Dirac notation Ψ1(φ) = 〈φ|1〉.
In this representation

〈φ|φ̂|1〉 = φΨ1(φ)

〈φ|π̂|1〉 = −i ∂
∂φ

Ψ1(φ) (1.9)

Time evolution of the quantum system can be described in two different ways:

Schrödinger picture

The operators are time-independent, the state vector depends on time so that the wave function

satisfies the (Schrödinger) Eq.:

i
∂

∂t
Ψ(φ, t) = Ĥ Ψ(φ, t) (1.10)

with formal solution, schematically

Ψ(φ, t) = e−iĤtΨ(φ, t = 0) (1.11)

(One needs of course to define more accurately what is e−iĤt)

Heisenberg picture

The states are time-independent, the operators depend on time:

Ψ(φ) = Ψ(φ, t = 0) = eiĤtΨ(φ, t)

φ̂(t) = eiĤtφ̂e−iĤt

π̂(t) = eiĤtπ̂e−iĤt (1.12)

Heisenberg Eqs.:

d

dt
φ̂(t) = i[H, φ̂(t)]

d

dt
π̂(t) = i[H, π̂(t)] (1.13)

Perturbation theory

In serious applications of QM one usually cannot find exact WF (analytically) and makes use of

perturbation theory to find some approximation. In our toy model — expansion in powers of the

anharmonicity parameter λ.

A typical problem: Find average value of φ2 in the ground state |Ω〉

〈Ω|φ̂2|Ω〉 = ?

In the QFT jargon, the ground state of the Hamiltonian is called “vacuum state”, and the corre-

sponding energy is called “vacuum energy”:

Ĥ|Ω〉 = Evac|Ω〉 (1.14)
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The standard QM-solution of this problem is well known. We split the Hamiltonian in the “unper-

turbed” part (harmonic oscillator) and “perturbation” (unharmonicity)

Ĥ = Ĥ0 + Ĥ1 Ĥ0 =
1

2
π̂2 +

1

2
ω2φ̂2 , Ĥ1 =

λ

4!
φ̂4 (1.15)

The energy levels and wave functions of the harmonic oscillator are known exactly:

Ĥ0|n〉 = En|n〉 , En =
(
n+

1

2

)
ω , Ψn(φ) = 〈φ|n〉 = known (1.16)

The ground state of the unperturbed Hamiltonian is called “perturbative vacuum” in the QFT

jargon:

Ĥ0|0〉 = E0|0〉 , E0 =
ω

2
, Ψ0(φ) ≡ 〈φ|0〉 = N e−

ω
2
φ2

(1.17)

where N is the proper normalization factor.

To the first order in λ one finds (see any QM textbook)

Evac = E0 + 〈0|Ĥ1|0〉+O(λ2) ,

|Ω〉 = |0〉 −
∑
n/=0

|n〉 1

En − E0
〈n|Ĥ1|0〉+O(λ2) , (1.18)

and then obviously

〈Ω|φ̂2|Ω〉 = 〈0|φ̂2|0〉 − 2
∑
n/=0

〈0|φ̂2|n〉 1

En − E0
〈n|Ĥ1|0〉+O(λ2) (1.19)

Using the known expressions for En and Ψn one can calculate the remaining matrix elements easily

and get the answer. This will gradually become more difficult if we want to calculate higher-order

corrections in λ, terms O(λ2) and beyond.

Note:

The QM expressions involve matrix elements between different energy states 〈n| . . . |0〉.
Why does this happen since naively one might think that the energy is conserved? The

answer is of course in the Heisenberg’s uncertainty principle: Since δEδt ≥ ~ the energy

is not conserved locally in time: a particle can “jump” to a higher energy level and then

“fall” back, as soon as the whole process takes a short time of the order of ~/(En−E0). In

QFT we will develop a different mathematical formalism to incorporate the uncertainty

principle, stay tuned!

Our aim in this chapter is to illustrate how the same problem can be solved using QFT methods.

So, let us take a deep breath and start. . .

1.1.1 Interaction representation

• Definition 1: Operators in the interaction representation

φ̂I(t) = eiĤ0tφ̂e−iĤ0t ,

π̂I(t) = eiĤ0tπ̂e−iĤ0t . (1.20)
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• Def. 2: Time-ordered product of operators

T{Ô1(t1)Ô2(t2)} = θ(t1 − t2)Ô1(t1)Ô2(t2) + θ(t2 − t1)Ô2(t2)Ô1φ(t1) (1.21)

• Def. 3: Evolution operator

Û(t, 0)
def
= eiĤ0te−iĤt ⇒ Û †(t, 0) = eiĤte−iĤ0t

Û(t1, t2)
def
= Û(t1, 0)Û †(t2, 0) = eiĤ0t1e−iĤ(t1−t2)e−iĤ0t2 (1.22)

“Transitivity” property: (easy to check from definition)

Û(t1, t2) Û(t2, t3) = Û(t1, t3) (1.23)

• Important result (Dyson series):

Û(t, 0) = Texp

[
−i
∫ t

0
dt′ ĤI(t

′)

]
, ĤI(t) =

λ

4!
φ̂4
I(t) (1.24)

where the time-ordered exponential is defined as

Texp

[
−i
∫ t

0
dt′ ĤI(t

′)

]
def
= 1− i

∫ t

0
dt′ ĤI(t

′) + (−i)2

∫ t

0
dt′
∫ t′

0
dt′′ ĤI(t

′)ĤI(t
′′) + . . . (1.25)

This result should be known to you but let us prove it once again to illustrate a general method

how such results can be obtained.

Note: here and in the following I will use the symbols I . . . J to indicate begin/end of a proof.

I
I will show that the both sides of (1.24) satisfy the same first-order differential equation in time,

and the same boundary condition at t = 0. Since the solution is unique, we will obtain the desired

statement: l.h.s. = r.h.s. (left-hand-side = right-hand-side).

The boundary condition is trivial:

Û(t, 0)
∣∣
t=0

= 1 = Texp[. . .]
∣∣
t=0

(1.26)

Differential equation, l.h.s.:

d

dt
Û(t, 0) = eiĤ0tiĤ0e

−iĤt + eiĤ0t(−iĤ)e−iĤt = −ieiĤ0t
(
Ĥ − Ĥ0

)
e−iĤt

= −ieiĤ0t
( λ

4!
φ̂4
)
e−iĤt = −i eiĤ0t

( λ
4!
φ̂4
)
e−iĤ0t︸ ︷︷ ︸ eiĤ0te−iĤt︸ ︷︷ ︸

= −iĤI(t) · Û(t, 0) (1.27)

Differential equation, r.h.s.:

In each term, time only appears as the upper limit of the first integral so a derivative removes it:

d

dt
Texp

[
−i
∫ t

0
dt′ ĤI(t

′)

]
=

d

dt

{
1− i

∫ t

0
dt′ ĤI(t

′) + (−i)2

∫ t

0
dt′
∫ t′

0
dt′′ ĤI(t

′)ĤI(t
′′) + . . .

}

= −iĤI(t) + (−i)ĤI(t)(−i)
∫ t

0
dt′′ ĤI(t

′′) + . . .

= −iĤI(t)Texp

[
−i
∫ t

0
dt′ ĤI(t

′)

]
(1.28)
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which is the same equation. This completes the proof.

J
• A similar representation can be proven for the general case

Û(t1, t2) = Texp

[
−i
∫ t2

t1

dt′ ĤI(t
′)

]
. (1.29)

Lecture 2

1.1.2 Master equation

Intuitive idea: if we take the unharmonic oscillator in the ground state of the harmonic oscillator

|0〉, (which has higher energy than the true ground state Ω) and allow some energy loss (dissipa-

tion), then the system will gradually loose energy and eventually come to the true ground state!

Let us put this idea in formulas. In general, the time dependence of the WF is given by

Ψ(φ, t) = e−iĤtΨ(φ, t = 0) (1.30)

We want to consider the limit

lim
T→∞

e−iĤT (1−iε)|0〉 =? (1.31)

where ε is an infinitesimal number which we will put to zero at the end of the calculation, e.g.

ε→ 0 limit is taken after T →∞. The role of the iε addition will be clear soon.

Let |N〉 be the complete set of eigenstates of the complete Hamiltonian

Ĥ|N〉 = EN |N〉 , Ĥ|Ω〉 = Evac|Ω〉 ,
∑
N

|N〉〈N | = 1l (1.32)

The last Eq. is the completeness condition, 1l is the unity operator. The sum includes |Ω〉 and all

excited states.

Then

lim
T→∞

e−iĤT (1−iε)|0〉 = lim
T→∞

e−iĤT (1−iε)
∑
N

|N〉〈N |0〉

= lim
T→∞

[
e−iEvacT (1−iε)|Ω〉〈Ω|0〉+

∑
N /=Ω

e−iENT (1−iε)|N〉〈N |0〉
]

= lim
T→∞

e−iEvacT (1−iε)
[
|Ω〉〈Ω|0〉+

(((
((((

((((
(((

((∑
N /=Ω

e−i(EN−Evac)T (1−iε)|N〉〈N |0〉
]

(1.33)

The contribution of excited states can be neglected because each term is exponentially suppressed

as exp[−(EN − Evac)Tε] with EN − Evac > 0 and Tε →∞ with the assumed order of limits: first

T →∞, then ε→ 0.

Note that 〈Ω|0〉 is the overlap integral between the WFs of the ground states of the unharmonic

and harmonic oscillators, which we tacitly assume to be non-zero.
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Thus we get, in a simplified notation

e−iĤT |0〉
T→∞
≈ |Ω〉〈Ω|0〉e−iEvacT (1−iε) (1.34)

or

|Ω〉 = e−iĤT |0〉 ·
[

1

e−iEvacT 〈Ω|0〉

]
if T →∞(1− iε) (1.35)

This is what we expected: The state |0〉 evolves to |Ω〉 with time, up to a numerical factor (the

expression in brackets).

NB: Instead of writing T (1− iε) with real time T , here and below I write simply T assuming that

it has a small imaginary part, it is a convenient shorthand notation.

Let us rewrite this expression slightly using

e−iĤT |0〉 = e−iĤT (1−iε)eiĤ0T︸ ︷︷ ︸ e−iĤ0T |0〉︸ ︷︷ ︸
Û(0,−T ) e−iE0T |0〉 (1.36)

and add the corresponding result for the relation of the ket-vectors, 〈Ω| and 〈0|. Obtain

|Ω〉 = Û(0,−T )|0〉 ·
[
e−i(Evac−E0)T 〈Ω|0〉

]−1
if T →∞(1− iε) ,

〈Ω| = 〈0| Û(T, 0) ·
[
e−i(Evac−E0)T 〈0|Ω〉

]−1
if T →∞(1− iε) . (1.37)

Note that the second equation is not a hermitian conjugate of the first one because under hermitian

conjugation (HC) T (1− iε) 7→ T (1 + iε) and this is not what we want.

Now remember that we actually want to calculate the average value of φ2 in the ground state. Thus

we use the above expressions to write

〈Ω|φ̂2|Ω〉 =
〈0|Û(T, 0)φ̂2Û(0,−T )|0〉
〈0|Ω〉e−2i(Evac−E0)T 〈Ω|0〉

∣∣∣∣
T→∞(1−iε)

(1.38)

Note that here φ̂2 is an operator in Schrödinger picture (time independent) which is the same as

an operator in Heisenberg picture at time zero.

The last step is to go over to the interaction representation. In the numerator we can rewrite

Û(T, 0)φ̂2Û(0,−T ) = Û(T, 0)φ̂2
I(0)Û(0,−T ) = T

{
φ̂2
I(0)Û(T,−T )

}
= T

{
φ̂2
I(0) exp

[
− i
∫ T

−T
dt′ ĤI(t

′)
]}

(1.39)

whereas the denominator can be written (for T →∞) as the ground state average of Û(T,−T ):

〈0|Û(T,−T )|0〉 = 〈0|eiĤ0T e−2iĤT eiĤ0T |0〉 = e2iE0T 〈0|e−2iĤT |0〉

T→∞→ e2iE0T 〈0|Ω〉e−2iEvacT 〈Ω|0〉 (1.40)
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In this way we get

〈Ω|φ̂2|Ω〉 = lim
T→∞(1−iε)

〈0|T
{
φ̂2
I(0) exp

[
− i
∫ T
−Tdt

′ ĤI(t
′)
]}
|0〉

〈0|T
{

exp
[
− i
∫ T
−Tdt

′ ĤI(t′)
]}
|0〉

!
=
〈0|T

{
φ̂2
I(0) exp

[
− i
∫∞
−∞dt

′ ĤI(t
′)
]}
|0〉

〈0|T exp
[
− i
∫∞
−∞dt

′ ĤI(t′)
]
|0〉

(1.41)

• A similar representation can be proven for the general case of a product of arbitrary number of

Heisenberg operators (derivation → exercises):

〈Ω|φ̂(t1) . . . φ̂(tn)|Ω〉 =
〈0|T

{
φ̂(t1) . . . φ̂(tn) exp

[
− i
∫∞
−∞dt

′ ĤI(t
′)
]}
|0〉

〈0|Texp
[
− i
∫∞
−∞dt

′ ĤI(t′)
]
|0〉

(1.42)

— the master equation for calculations in the interaction representation.

At this point you certainly may ask — what is the point to rewrite the short expression on the l.h.s.

in such a cumbersome and contrive way? Well, this is the next part of our program — develop

effective tools to evaluate the expression on the r.h.s. in perturbation theory. This will take some

time and effort, however, after the tools are at hand, you will see that the actual calculation

becomes simple, in fact simpler than a calculation using conventional QM methods, especially if

one progresses to higher orders in λ.

1.1.3 Creation and annihilation operators; the propagator

• To the first order in λ we can use

exp
[
− i
∫ ∞
−∞

dt ĤI(t)
]

= 1− i λ
4!

∫ ∞
−∞

dt φ̂4
I(t) +O(λ2) (1.43)

so that from (1.41)

〈Ω|φ̂2|Ω〉 = 〈0|φ̂2|0〉 − i λ
4!

∫ ∞
−∞

dt

[
〈0|T{φ̂4

I(t)φ̂
2
I(0)|0〉 − 〈0|φ̂2

I(0)|0〉〈0|φ̂4
I(t)|0〉

]
+O(λ2) (1.44)

where the first term in [. . .]comes from the expansion of the numerator and the second term from

the denominator.

Note that φ̂2 = φ̂2
I(0) and I will later use that 〈0|φ̂4

I(t)|0〉 = 〈0|φ̂4
I(0)|0〉 thanks to the time-

translation invariance.

It is clear that if I continue the perturbative expansion to higher-order in λ, I will generally get

multiple time-ordered integrals of the matrix elements of the type

Gn(t1 . . . tn) = 〈0|T{φ̂I(t1)φ̂I(t2) . . . φ̂I(tn)}|0〉 (1.45)

(The times tk may coincide; e.g., in the leading order (above) we encounter a matrix element with

four fields at time t and two fields at time zero)

In the QFT jargon, such objects are called Green functions: they are matrix elements of the

time-ordered products of field operators in the interaction representation over the ground state of
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the unperturbed Hamiltonian (perturbative vacuum state). The simplest nontrivial Green function

is called the propagator

G(t− t′) = 〈0|T{φ̂I(t)φ̂I(t′)}|0〉 (1.46)

We need to develop a general technique how to calculate such objects.

• We are going to profit from the standard formalism of creation and annihilation operators that

you should know from QM lectures. Our unperturbed Hamiltonian is

Ĥ0 =
1

2
π̂2 +

1

2
ω2φ̂2 . (1.47)

Define

â =
1√
2ω

[ωφ̂+ iπ̂] annihilation operator

â† =
1√
2ω

[ωφ̂− iπ̂] creation operator (1.48)

Then (easy to derive using def.)

• [φ̂, π̂] = i ⇒ [â, â†] = 1

• Ĥ0 = ω
[
â†â+

1

2

]
• â|0〉 = 0

• (â†)N |0〉 = const · |N〉

• [Ĥ0, â] = −ωâ , [Ĥ0, â
†] = +ωâ† (1.49)

Using these elementary properties one can show that

eiĤ0tâe−iĤ0t = â e−iωt ,

eiĤ0tâ†e−iĤ0t = â† eiωt (1.50)

(e.g., using Heisenberg eq. (d/dt)â(t) = i[Ĥ0, a(t)])

and therefore

φI(t) = eiĤ0tφ̂e−iĤ0t =
1√
2ω
eiĤ0t(â+ â†)e−iĤ0t

=
1√
2ω

(
â e−iωt + â† eiωt

)
(1.51)

This representation plays the central role; let us use it to calculate the propagator:

〈0|T{φ̂I(t)φ̂I(t′)}|0〉 =
1

2ω
θ(t− t′)〈0|

(
â e−iωt + â† eiωt

)(
â e−iωt

′
+ â† eiωt

′
)
|0〉+ (t↔ t′) (1.52)
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Here use that â|0〉 = 0 and 〈0|â† = 0. Thus a nonzero contribution can only come from the term

∝ ââ† and we can replace ââ† = [â, â†] +�
�â†â = 1l. Thus

. . . =
1

2ω
θ(t− t′)〈0|[â, â†]eiω(t′−t)|0〉+ (t↔ t′)

=
1

2ω
θ(t− t′)eiω(t′−t) +

1

2ω
θ(t′ − t)eiω(t−t′) =

1

2ω
e−iω|t−t

′| (1.53)

so that

G(t− t′) =
1

2ω
e−iω|t−t

′| (1.54)

Lecture 3

1.1.4 Feynman diagrams

• Consider now the more complicated matrix element that we encountered in Eq. (1.44):

〈0|T{φ̂4
I(t)φ

2
I(0)}|0〉 =

1

8ω3
θ(t)〈0|

(
â e−iωt + â† eiωt

)4
(â+ â†)2|0〉

+
1

8ω3
θ(−t)〈0|(â+ â†)2

(
â e−iωt + â† eiωt

)4
|0〉 (1.55)

This produces a sum of terms containing products of creation and annihilation operators, and we

can evaluate each term moving all â to the right and/or all â† to the left, where they annihilate

the ground state. In order to get a nonzero contribution, all â, â† must end up in the commutators.

Thus we only need terms with three â and three â† (in this example) and we need to transform

their product to the product of three commutators [â, â†][â, â†][â, â†] decorated by the proper eiωt

factors that remember from which fields these pairs originated from. This procedure of indicating

the pair of â and â† that originate from particular fields and end up in a commutator is called a

Wick contraction. One can show that summing up the terms with different time ordering (θ(t) and

θ(−t)) will quite generally produce the expression for the propagator (see any textbook on QFT).

We define a contraction as

φI(t)φI(t
′)

!
= G(t− t′) (1.56)

and a nonzero contribution is obtained when all fields are contracted, e.g.

φI(0)φI(0)φI(t)φI(t)φI(t)φI(t) (1.57)

The answer is obtained by summing up contributions of all possible contractions. E.g. another one

is

φI(0)φI(0)φI(t)φI(t)φI(t)φI(t) (1.58)

Since some fields are taken at the same time position, interchanging them does not make a difference.

E.g. a Wick contraction

φI(0)φI(0)φI(t)φI(t)φI(t)φI(t) (1.59)



1 CANONICAL QUANTIZATION 10

gives the same contribution as above. Thus we can choose one and take in account other equivalent

contractions by the appropriate combinatorial factor.

• Following Feynman, it has become standard to denote different contributions by pictures where

different time positions are shown as points (called vertices) and each contraction (propagator) is

depicted as a line — the Feynman diagrams.

The simplest one:

〈0|T{φ2
I(0)}|0〉 =

0

= G(0) (1.60)

What we need for Eq. (1.44), apart from time integration:

−i λ
4!

[
〈0|T{φ̂4

I(t)φ̂
2
I(0)|0〉 − 〈0|φ̂2

I(0)|0〉〈0|φ̂4
I(t)|0〉

]
(1.61)

• The first term comes from the numerator of the master-equation:

−iλ
4!

−iλ
4!↙ ↙(

− iλ
4!

)
〈0|T{φ̂4

I(t)φ̂
2
I(0)}|0〉 = 12

0 t

+ 3

0 t

= 12

(
− iλ

4!

)
G2(t)G(0) + 3

(
− iλ

4!

)
G(0)G2(0) (1.62)

Here “12” and “3” are the combinatorial factors. Note that it is customary and convenient to

associate the factor − iλ
4! with the interaction vertex (here at time t).

• The second term comes from the denominator of the master-equation:

〈0|T{φ2
I(0)}|0〉

(
− iλ

4!

)
〈0|T{φ4

I(t)}|0〉 = 3

0 t

(1.63)

We see that this contribution is exactly the same as the second term in (1.62) and it enters in (1.61)

with a minus sign so that they cancel each other!

This is an example of the general statement: all contributions that can be separated in parts

without cutting any propagator lines (called disconnected diagrams) cancel exactly (to all orders)

between the contributions of the numerator and the denominator of the master-equation: The role

of the denominator is to cancel contributions of all disconnected Feynman diagrams. This is a

general result:

Green functions are given by a sum of connected Feynman diagrams
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Disconnected diagrams can simply be ignored (always).

• Returning to our original problem (1.44) we get

〈Ω|φ̂2|Ω〉 = G(0) + 12

(
− iλ

4!

)∫ ∞
−∞

dtG2(t)G(0) +O(λ2)

=
1

2ω

[
1− iλ

2

1

4ω2

∫ ∞
−∞

dt e−2iω|t|
]

+O(λ2)

=
1

2ω

[
1− λ

8ω3
+O(λ2)

]
(1.64)

which is the desired result ©

Note that, after the machinery is there, the calculation becomes simple and can be extended to

higher orders in λ in a straightforward manner. . .

1.2 Klein-Gordon Field

• The formalism developed above may seem to be too heavy for such a simple QM problem, but

the main point is that it can be generalized from one quantum particle to a field, which can be

viewed as a collection of oscillators sitting at different positions in space. The only thing we need

to do is to add an additional argument

particle : φ(t) ⇒ field : φ(~x, t) ≡ φ(x) , xµ = {ct, ~x} (1.65)

If we require relativistic invariance of the action, time derivatives and space derivatives have to

enter the Lagrangian (density) in a symmetric way so that a suitable generalization is

L =

∫
d3xL(φ̇(~x), φ(~x), t) ,

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 =

1

2
φ̇2 − 1

2
(~∇φ)2 − 1

2
m2φ2 − λ

4!
φ4 (1.66)

If we throw away the unharmonicity — the φ4 term – this becomes the standard Klein-Gordon

Lagrangian.

The simplest physical realization — a one-dimensional chain of oscillators separated by the distance

a, that can swing in transverse direction and are connected by strings of appropriate strength:

a

L(t) = a
∑
n

[
1

2
φ̇2
n(t)− 1

2a2
(φn+1(t)− φn(t))2 − 1

2
m2φ2

n(t)

]
+ anharmonicity (1.67)
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In the limit a→ 0 identifying φn(t) = φ(xn), xn = na, a
∑

n →
∫
dx, we obtain the Klein-Gordon

Lagrangian (for one space dimension).

The corresponding Euler-Lagrange Eq. is the Klein-Gordon (KG) equation

(�+m2)φ = 0 (1.68)

which has a general solution

φ(x) =

∫
d3p

(2π)3
√

2Ep

(
a(~p)e−ipx + a∗(~p)eipx

)
(1.69)

where px ≡ pµxµ with p0 = Ep =
√
~p2 +m2. We can view this general solution as a superposition

of waves with given momentum.

• So far we have classical oscillators, but we can quantize this system in the same way as above.

The canonical momenta of course also acquire a coordinate dependence

π(~x, t) = φ̇(~x, t) (1.70)

so that the KG Hamiltonian reads

HKG
0 =

∫
d3x

[
1

2
π2(~x, t) +

1

2
(~∇φ(~x, t))2 +

1

2
m2φ2(~x, t)

]
(1.71)

Using the representation in Eq. (1.69) it is easy to show that the Hamiltonian can be written as

HKG
0 =

∫
d3p

(2π)3
Ep a

∗(~p)a(~p) (1.72)

so it describes a system of noninteracting (classical) waves with given momentum.

To quantize this system we promote φ(~x), π(~x) to operators and postulate, for Schrödinger

operators

[φ̂(~x), π̂(~y)] = iδ(3)(~x− ~y) ,

[φ̂(~x), φ̂(~y)] = [π̂(~x), π̂(~y)] = 0 (1.73)

The coefficients a(~p) in (1.69) also become operators: a(~p) 7→ â(~p), a?(~p) 7→ â†(~p), with the

commutation relations

[â(~p), â†(~p′)] = (2π)3δ(3)(~p− ~p′) ,

[â(~p), â(~p′)] = [â†(~p), â†(~p′)] = 0 (1.74)

and the quantum Hamiltonian corresponding to (1.72) is

ĤKG
0 =

∫
d3p

(2π)3
Ep â

†(~p)â(~p) + const (1.75)
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Note that going over from (1.72) to (1.75) involves some ambiguity since the operators â† and â

do not commute, so that the order in which they are written does matter. For this (still simple)

system, this ambiguity reduces to the possibility to add a constant which is usually fixed by the

requirement the the ground state energy of the system is taken to be zero. This is different from

the usual QM choice to add 1/2, cf. (1.49) but apart from that the similarity is obvious.

Note that the field operator φ̂(x) is naturally the Heisenberg operator, indeed

φ̂(x) =

∫
d3p

(2π)3
√

2Ep

(
â(~p)e−ipx + â†(~p)eipx

)
px ≡ Ept− ~p~x

= eiĤ
KG
0 t

[∫
d3p

(2π)3
√

2Ep

(
â(~p)ei~p~x + â†(~p)e−i~p~x

)]
e−iĤ

KG
0 t (1.76)

cf. Eq. (1.51).

• We see that the difference to the case of a single oscillator is minimal, and therefore if we add a

small anharmonicity to the Lagrangian/Hamiltonian (term ∼ φ̂4), we can develop the perturbation

theory in the same way as before. Thus we end up with very much the same master equation

〈Ω|φ̂(x1) . . . φ̂(xn)|Ω〉 =
〈0|T

{
φ̂(x1) . . . φ̂(xn) exp

[
i
∫
d4x L̂I(x)

]}
|0〉

〈0|Texp
[
i
∫
d4x L̂I(x)

]
|0〉

(1.77)

In order to arrive at this expression I used∫ ∞
−∞

dt ĤI(t) = −
∫ ∞
−∞

dt

∫
d3~x L̂I(~x, t) (1.78)

• Let us calculate the propagator of the KG field:

G0(x− y) = 〈0|T {φ̂(x), φ̂(y)}|0〉

= θ(x0 − y0)〈0|
∫

d3p

(2π)3
√

2Ep

(
â(~p)e−ipx + â†(~p)eipx

)
×
∫

d3p′

(2π)3
√

2Ep′

(
â(~p′)e−ip

′y + â†(~p′)eip
′y
)
|0〉+ (x↔ y)

= θ(x0 − y0)

∫
d3p d3p′

(2π)6
√

2Ep
√

2Ep′
e−ipx+ip′y〈0|â(~p)â†(~p′)|0〉+ (x↔ y)

= θ(x0 − y0)

∫
d3p

(2π)32Ep
e−iEp(x0−y0)+i~p(~x−~y) + (x↔ y) (1.79)

This is again almost the same formula as for the oscillator, with Ep playing the role of frequency

and added integration over all possible momenta.

As well known, this expression can be rewritten in another form, introducing an auxiliary integration
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over p0

G0(x− y) =

∫ ∞
−∞

dp0

2πi

∫
d3p

(2π)3
e−ip0(x0−y0)+i~p(~x−~y) 1

m2 − p2
0 + ~p2 − iε

!
=

∫
d4p

(2π)4i
e−ip(x−y) 1

m2 − p2 − iε
(1.80)

The above expression is recovered doing the p0 integration with the help of Cauchy’s residue the-

orem after which in the exponent p0 7→ Ep. This representation is standard in QFT applications

and is actually nothing but a different way to implement the Heisenberg’s uncertainty principle. In

conventional QM formalism energy is not conserved (for short period of time) so that the particle

can jump to higher levels and fall back. In the QFT formalism, the four-momentum variable pµ is

strictly conserved at any interaction point, but the zero component p0 only becomes “true” energy

p0 →
√
m2 + ~p2 in the integral sense. It can deviate from “true” energy locally in time during the

interaction process. We call such particles, with p0 6=
√
m2 + ~p2, virtual in contradistinction to real

particles with p0 =
√
m2 + ~p2.

A final comment: I have used here the usual nonrelativistic QM convention for the normalization

of states, 〈N |N ′〉 = δNN ′ , or 〈p|p′〉 = δ(3)(~p − ~p′). In a relativistic field theory it is customary to

use a different normalization 〈p|p′〉 = 2Epδ
(3)(~p − ~p′) to ensure good Lorentz trafo properties.

Changing to the relativistic convention corresponds to the redefinition â(~p) 7→
√

2Epâ(~p), â†(~p) 7→√
2EP â

†(~p). The basic commutation relation (1.74) becomes [â(~p), â†(~p′)] = (2π)32Epδ
(3)(~p − ~p′)

and the integration measure in the expansion of the field over annihilation and creation operators

changes to
∫
d3p/

√
2Ep 7→

∫
d3p/(2Ep).

1.3 Pauli’s spin-statistics theorem

Let us look at the motivation for the commutation relations (1.73), (1.74) more closely. The major

physical assumption behind them:

• Microcausality:

[φ̂(x), φ̂(y)] = 0 if (x− y)2 < 0 (1.81)

(The fields at space-like separations cannot influence each other and can be measured simultane-

ously; thus in QM formalism they are described by commuting operators)

In particular for equal times

∀~x, ~y [φ̂(~x, t), φ̂(~y, t)] = 0 (1.82)

Write (here relativistic normalization convention)

φ̂(x) =

∫
d3p

(2π)32Ep

(
â(~p)e−iEpt+i~p~x + â†(~p)eiEpt−i~p~x

)
=

∫
d3p

(2π)32Ep
e−i~p~x

(
â(−~p)e−iEpt + â†(~p)eiEpt

)
(1.83)
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Then

â(−~p)e−iEpt + â†(~p)eiEpt = 2Ep

∫
d3x ei~p~xφ̂(~x, t) (1.84)

and therefore

[â(−~p)e−iEpt + â†(~p)eiEpt, â(−~p′)e−iEp′ t + â†(~p′)eiEp′ t] = 2Ep2Ep′

∫
d3xd3y ei~p~xei

~p′~y [̂φ(~x, t), φ(~y, t)]

= 0 (1.85)

Thus ∀p, p′, t

∀p, p′, t 0 = ei(Ep+Ep′ )t[â†(~p), â†(~p′)] + ei(Ep−Ep′ )t[â†(~p), â(−~p′)]

+ ei(−Ep+Ep′ )t[â(−~p), â†(~p′)] + ei(−Ep−Ep′ )t[â(−~p), â(−~p′)] (1.86)

Since Ep > 0 (we do not want states with negative energy), the first and the last term must vanish

separately as they have a different time dependence from the rest. Thus

∀~p, ~p′ [â†(~p), â†(~p′)] = [â(~p), â(~p′)] = 0 (1.87)

whereas nonzero [a(~p), â†(~p′)] 6= 0 is not forbidden. Proceeding in the similar way as above one can

derive

[a(~p), â†(~p′)] = ei(Ep−Ep′ )t
∫
d3xd3y e−i~p~xei

~p′~y
{
iEp′

[
d
dt φ̂(~x, t), φ̂(~y, t)

]
− iEp

[
φ̂(~x, t), ddt φ̂(~y, t)

]}
(1.88)

Here
[
d
dt φ̂(~x, t), φ̂(~y, t)

]
must vanish for ~x 6= ~y from microcausality, but does not need to vanish at

~x = ~y. The minimum assumption is[
φ̂(~x, t), ddt φ̂(~y, t)

]
= iδ(3)(~x− ~y) ⇒ [â(p), â†(p′)] = (2π)32Ep δ

(3)(~p− ~p′) (1.89)

This is how the canonical commutation rules arise.

• From the commutation relations and the expression for the Hamiltonian it is easy to see that

applying a†(~p) to an arbitrary state increases its energy by Ep and applying a(~p) decreases energy

of the state by Ep. Thus if we start with some eigenstate of H with finite (positive) energy and

apply a(~p) many times, we will eventually come to a state with negative energy that we do not

want to exist. The only way to avoid this is to assume that, applying a(~p) many times, at some

point this procedure has to break up: we annihilate the state (but not get another state with lower

energy). We call this state vacuum, |0〉, and by definition ∀~p a(~p)|0〉 = 0. Energy of the vacuum

state can be usually set to zero (convention).

All other states (with higher energy) can be obtained by applying creation operators to the vac-

uum state. The one particle state is defined as |~p〉 = â†(~p)|0〉, two-particle states are |~p1~p2〉 =

â†(~p1)â†(~p2)|0〉, etc. Since the creation operators for different momenta commute, one obtains

|~p1~p2〉 = â†(~p1)â†(~p2)|0〉 = â†(~p2)â†(~p1)|0〉 = |~p2~p1〉 (1.90)
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so that interchanging particle momenta we obtain the same state — with the same wave function.

This is the statement of Pauli’s spin-statistics theorem: particles quantized using the canonical

commutation relation (1.89) (scalars) have a symmetric wave function under the interchange of

their momenta (bosons).

• What about fermions?

Similar to bosons we to consider solutions of the Dirac equation (Dirac spinors) and promote them

to field operators. Again similar to bosons, we expand Dirac spinors in plane waves and have to

promote the to operators:

ψ̂(x) =

∫
d3p

(2π)32Ep

∑
s=±1/2

{
eipxvs(p)b̂

†
s(p) + e−ipxus(p)âs(p)

}
(1.91)

and postulate the relativistic generalization of Heisenberg equations (the same we do for scalars, I

skipped this for brevity)

∂ψ̂(x)

∂xµ
= i[P̂µ, ψ̂(x)] , P̂µ =

(
Ĥ

~̂P

)
(1.92)

where P̂µ is the four-energy-momentum operator. It follows that

[P̂µ, â
†
s(~p)] = pµâ

†
s(~p) [P̂µ, b̂

†
s(~p)] = pµb̂

†
s(~p)

[P̂µ, âs(~p)] = −pµâs(~p) [P̂µ, b̂s(~p)] = −pµb̂s(~p) (1.93)

and similar as for scalars we have to assume existence of the vacuum state that is annihilated by

both âs(~p) and b̂s(~p) (otherwise negative energy states):

âs(~p)|0〉 = 0 b̂s(~p)|0〉 = 0 (1.94)

and all physical states are obtained by the application of â†s(~p) (electrons, quarks) or b̂†s(~p) (positrons,

antiquarks).

So far so good, but now we have to decide what commutation relations we want to postulate. The

first idea is of course to copy-paste the same equations as we had above for the KG field:

(?) [âs(~p), â
†
s′(
~p′)] = [b̂s(~p), b̂

†
s′(
~p′)] = δss′(2π)32Epδ

(3)(~p− ~p′) (1.95)

This does not work, however, because using these relations one obtains a non-vanishing equal time

commutator

[ψ̂(~x, t), ˆ̄ψ(~y, t)] 6= 0 for ~x 6= ~y (?!) (1.96)

(Here ψ̄ = ψ†γ0 is a Dirac conjugate spinor). One may try to escape by observing that the Dirac

field itself is not directly observable, and all physical quantities are expressed in terms of bilinear

expressions of the type ψ̄Γψ. Thus one needs to enforce microcausality for them and not for ψ

itself. This is a good point, but using (1.95) one obtains non-vanishing equal-time commutators

also for Dirac bilinears, so it does no help. Thus we have to conclude that the assumption in
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(1.95) is wrong and therefore quantum spin-1/2 particles (quantized solutions of Dirac Eq.) are

not bosons. What are they? Lecture 4

The solution was found in 1927 by Jordan and Wigner who observed that the microcausality

condition for bilinear products of Dirac fields

[ ˆ̄ψ(~x, t)Γ1ψ̂(~x, t), ˆ̄ψ(~y, t)Γ2ψ̂(~y, t)] = 0 for ~x 6= ~y (1.97)

can be fulfilled by assuming anticommutativity of the creation and annihilation operators:

{âs(~p), â†s′(~p′)} = {b̂s(~p), b̂†s′(~p′)} = δss′(2π)32Epδ
(3)(~p− ~p′)

{âs(~p), âs′(~p′)} = {b̂s(~p), b̂s′(~p′)} = {â†s(~p), â
†
s′(
~p′)} = {b̂†s(~p), b̂

†
s′(
~p′)} = 0

{â†s(~p), b̂
†
s′(
~p′)} = {â†s(~p), b̂s′(~p′)} = {âs(~p), b̂†s′(~p′)} = {âs(~p), b̂s′(~p′)} = 0 (1.98)

With this assumption one gets for the fields

{ψ̂(~x, t), ψ̂(~y, t)} = { ˆ̄ψ(~x, t), ˆ̄ψ(~y, t)} = 0 , {ψ̂(~x, t), ˆ̄ψ(~y, t)} = γ0δ
(3)(~x− ~y) (1.99)

and one can check (1.97) using

[AB,CD] = A{B,C}D −AC{B,D} − C{A,D}B + {C,A}DB

For the two-particle state one obtains in this case (e.g., two electrons with spins s1, s2)

|(~p1, s1); (~p2, s2)〉 = â†s1(~p1)â†s2(~p2)|0〉 = −â†s2(~p2)â†s1(~p1)|0〉 = −|(~p2, s2); (~p1, s1)〉 (1.100)

Thus Dirac particles are fermions!

1.4 Quantum Electrodynamics

• The QED Lagrangian is

L(x) = −1

4
Fµν(x)Fµν(x) + ψ̄(x)(i /D −m)ψ(x) (1.101)

where the first term describes the electromagnetic field (Euler-Lagrange Eqs. = Maxwell equations).

We can try to quantize the electromagnetic field as above. Choose Coulomb gauge:

~∇ · ~A = ∂kAk = 0 , k = 1, 2, 3 (1.102)

In this gauge there are no time derivatives in L of the scalar potential Aµ = {Φ, ~A} so that the

corresponding Maxwell Eq. is the same as in electrostatics

∆Φ = ρ(~x, t) (1.103)

and is solved by

Φ(~x, t) = −
∫
d3x′

ρ(~x′, t)

4π|~x− ~x′|
Coulomb potential (1.104)
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Thus Φ in Coulomb gauge it is a given function (for a given charge distribution) and not a dynamic

variable. Let us assume there are no external charges; then Φ = 0 and we are left with three

components of the vector potential ~A which we can take as generalized coordinates.

The corresponding generalized momenta are the electric fields

πk =
∂L
∂Ȧk

= Ek (1.105)

and we get the Hamiltonian for the Maxwell field in vacuum

LF = −1

4
Fµν(x)Fµν(x) =

1

2

(
~E2 − ~B2

)
⇒
H =

∫
d3x (pkȦk − L) =

∫
d3x

1

2

(
~E2 + ~B2

)
(1.106)

So far everything is classical, let us now quantize the theory.

• To start with, we promote the vector potential and electric field to operators in Hilbert space

A(~x, t) 7→ Â(~x, t) , E(~x, t) 7→ Ê(~x, t) (1.107)

and have to assume some commutation relations. A natural option would be to try (like for KG

field)

[Âi(~x, t), Âj(~y, t)] = [π̂i(~x, t), π̂j(~y, t)] = 0

[π̂i(~x, t), Âj(~y, t)] = [Êi(~x, t), Âj(~y, t)] = −iδijδ(3)(~x− ~y) (1.108)

Problem: the last relation is in contradiction with the Gauss law:

~∇ · ~E = 0 (1.109)

Indeed

[Êi(~x, t), Âj(~y, t)] = −iδijδ(3)(~x− ~y)
⇒

[∇iÊi(~x, t), Âj(~y, t)] = −i ∂
∂xj

δ(3)(~x− ~y) (?!) (1.110)

This is a real difficulty.

• QED is in fact a simple theory (we will later see why) and can be saved by a trick. It is known

that only two transverse polarizations of the electromagnetic field are physically relevant, If we

expand the field in plane waves, we can keep these two polarizations only

~̂A(x) =

∫
d3k

(2π)32k0

∑
λ=1,2

[
~e(λ)(~k)âλ(~k)eikx + ~e∗(λ)(

~k)â†λ(~k)e−ikx
]

(1.111)

where (~k · ~e(1,2)(~k)) = 0, k0 = Ek = |~k|, and impose nontrivial commutation relations for the

creation/annihilation operators of physical polarizations only:

[âλ(~k)â†λ′(
~k′)] = (2π)32k0δλλ′δ

(3)(~x− ~y) (1.112)
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This will lead to

[Êi(~x, t), Âj(~y, t)] = −iδ⊥ijδ(3)(~x− ~y) (1.113)

where the object on the r.h.s. is defined as

δ⊥ijδ
(3)(~x− ~y)

!
=

∫
d3k

(2π)3

(
δij −

kikj
~k2

)
e−i

~k(~x−~y) (1.114)

On can show that in this way the Gauss law will be satisfied. This does not work for more compli-

cated (nonabelian) gauge theories, however, (like QCD) so we need another method.

• To summarize this Section: canonical quantization of field theories has its roots in usual quantum

mechanics and is rather intuitive. It has its limits, however, so we will now proceed to develop a

different approach, called path-integral quantization.

2 Path Integral in Quantum Mechanics

Let us consider a simple system with one degree of freedom (particle) as example

q : coordinate p : momentum (2.1)

(one-dimensional for simplicity)

I will use notations (used already)

q̂|q〉 = q|q〉 eigenstates of the position operator (2.2)

p̂|p〉 = p|p〉 eigenstates of the momentum operator (2.3)

Completeness condition:∫
dq |q〉〈q| = 1l ,

∫
dp

2π
|p〉〈p| = 1l , (2.4)

Then, e.g.

Ψp(q) = 〈q|p〉 = eiqp (2.5)

— coordinate space wave function of the state |p〉 (particle with momentum p)

2.1 Path-integral representation for the transition amplitude

• Transition amplitude is defined as a probability amplitude of the transition

|q1〉time=t1 7→ |q2〉time=t2 (2.6)

and is given by the appropriate matrix element of the evolution operator

〈q2|e−iĤ(t2−t1)|q1〉 (2.7)
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Indeed

|2〉 = e−iĤ(t2−t1)|1〉 ⇔ 〈q2|2〉 = 〈q2|e−iĤ(t2−t1)|q1〉 (2.8)

and inserting the unity operator this can be rewritten as

〈q2|2〉 =

∫
dq1 〈q2|e−iĤ(t2−t1)|q1〉〈q1|1〉 (2.9)

We will derive a representation for the transition amplitude in the form of a path integral. This

result was obtained by Feynman and had profound importance for the development of QFT and

statistical physics.

Let

ti = initial time tf = final time (2.10)

and cut the whole time interval tf − ti in N equal slices

tf ≡ tN > tN−1 > tN−2 > . . . > t0 ≡ ti (2.11)

Let

∆t = tk − tk−1 =
tf − ti
N

∀k (2.12)

Using transitivity property of the evolution operator we can write

e−iĤ(tf−ti) = e−iĤ(tN−tN−1)e−iĤ(tN−1−tN−2) . . . e−iĤ(t1−t0) (2.13)

and therefore

〈qf |e−iĤ(tf−ti)|qi〉 =

∫
dqN−1 . . . dq1〈qN |e−iĤ∆t|qN−1〉〈qN−1|e−iĤ∆t|qN−2〉 . . . 〈q1|e−iĤ∆t|q0〉

(2.14)

We can identify the integration variables as particle positions at intermediate times

qk
!

= q(tk) (2.15)

so that taken together they describe a path taken by the particle in space-time

t0
t1

tN

N
q

0
q

In the limit N →∞ the path becomes continuous.
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The multidimensional integral
∫
dqN−1 . . . dq1 can then be viewed as an integral over all possible

paths (trajectories) that the particle can take on its way from qi to qf :

Dq(t) !
=

N−1∏
k=1

dqk (2.16)

— the path integral

• We will now show that the integrand in the path integral can be written as eiS where S is the

classical action calculated along the path.

• To this end, write

〈qk|e−iĤ∆t|qk−1〉 =

∫
dpk
2π
〈qk|pk〉〈pk|e−iĤ∆t|qk−1〉 , 〈qk|pk〉 = eiqkpk (2.17)

Let H(p, q) be the classical Hamiltonian. The quantum Hamiltonian operator is obtained by the

substitution

q 7→ q̂ , p 7→ p̂ , [q̂, p̂] = i . (2.18)

Since q̂ and p̂ do not commute, this procedure is not unique. Let us assume that Ĥ is written in

such a form that all momentum operators always stand before the coordinate operators. [This can

always be done, rewriting “wrongly ordered” terms as “correctly ordered” plus commutators]. In

this case

〈pk|e−iĤ(p̂,q̂)∆t|qk−1〉 = e−iH(pk,qk−1)∆t〈pk|qk−1〉 = e−iH(pk,qk−1)∆te−ipkqk−1 (2.19)

and therefore

〈qk|e−iĤ∆t|qk−1〉 =

∫
dpk
2π

e−iH(pk,qk−1)∆teipk(qk−qk−1) (2.20)

To evaluate (2.14) we need a product of such factors for k = 1, . . . , N − 1 so we will get a multiple

integral over the momenta pk. Following the same logic as above, we can identify pk = p(tk) and

introduce a path integral in momentum space

Dp(t) !
=

N−1∏
k=1

dpk
2π

(2.21)

In this way we get

〈qf |e−iĤ(tf−ti)|qi〉 =

∫
Dq(t)

∫
Dp(t) exp

[
ipN (qN − qN−1) + . . .+ ip1(q1 − q0)

]
× exp

[
−i∆t

(
H(pN , qN−1) + . . .+H(p1, q0)

)]
(2.22)

and in the limit N →∞ (whether this limit exists is a very delicate question) one obtains

〈qf |e−iĤ(tf−ti)|qi〉 =

∫
Dq(t)

∫
Dp(t) exp

{
i

∫ tf

ti

dt
[
p(t)q̇(t)−H

(
p(t), q(t)

)]}
(2.23)
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—— path integral in phase space

This is the most general form of the path integral which should be used as a starting point in

complicated situations.

• The most important special case is

H(p, q) =
1

2
p2 + V (q) (2.24)

(quadratic dependence on momentum). In this case the path integral over momenta can be taken

explicitly.

By definition∫
Dp(t) exp

{
i

∫ tf

ti

dt
[
p(t)q̇(t)− 1

2
p2(t)

]}
= lim

N→∞

N∏
k=1

∫ ∞
−∞

dpk
2π

exp

{
i∆t

∑
k

[pkq̇k −
1

2
p2
k]

}
,

pk ≡ p(tk) , q̇k ≡ q̇(tk) (2.25)

which is nothing but a product of a large number of Gaussian integrals:∫ ∞
−∞

dx e
1
2
Ax2−bx =

√
2π

A
e
b2

2A

x↔ pk

A↔ i∆t

b↔ −i∆tq̇k
(2.26)

so that get

. . . = lim
N→∞

N∏
k=1

1

2π

√
2π

i∆t
e−

1
2

(∆t)2q̇2
k/(i∆t)

= lim
N→∞

(
N

2πi(tf − ti)

)N/2
︸ ︷︷ ︸ exp

{
i

2

∫ tf

ti

dt q̇2(t)

}
(2.27)

??? (2.28)

The normalization factor looks horrible, let us denote it as N for the time being (we will see how

to handle it in what follows). Thus obtain

〈qf |e−iĤ(tf−ti)|qi〉 = N
∫
Dq(t) exp

{
i

∫ tf

ti

dt
[1

2
q̇2(t)− V

(
q(t)

)]}

= N
∫
Dq(t) exp

{
i

∫ tf

ti

dtL(q, q̇)

}

= N
∫
Dq(t) exp

{
iS[q]

}
(2.29)

which is the final result:

〈qf |e−iĤ(tf−ti)|qi〉 = N

q(tf )=qf∫
q(ti)=qi

Dq(t) exp
{
iS[q]

}
(2.30)
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where I added the boundary conditions: the path integral goes over all paths starting at qi at time

ti and ending at qf at time tf . Lecture 5

2.2 Euclidean version of the path integral

• Let |N〉 be the energy eigenstates

Ĥ|N〉 = EN |N〉 (2.31)

so that

〈qf |e−iĤ(tf−ti)|qi〉 =
∑
N

〈qf |N〉e−iEN (tf−ti)〈N |qi〉

=
∑
N

ΨN (qf )e−iEN (tf−ti)Ψ∗N (qi) (2.32)

and make a formal substitution

t 7→ −iτ , τ = it (2.33)

If τ ∈ R, t becomes imaginary — imaginary time

Then

〈qf |e−Ĥ(τf−τi)|qi〉 =
∑
N

ΨN (qf )e−EN (τf−τi)Ψ∗N (qi)

τf−τi→∞−→ Ψ0(qf )e−E0(τf−τi)Ψ∗0(qi) (2.34)

— only the ground state contribution survives at τf − τi → ∞. This can be useful or useless

depending on a particular problem.

• With this substitution, the relativistic interval becomes

q2 = t2 − ~q2 7→ −(τ2 + q2
1 + q2

2 + q2
3) = −q2

E (2.35)

— Euclidean metric (overall sign minus)

For this reason one usually speaks of going over to imaginary time as going over from Minkowski

to Euclidean metric in space-time.

Euclidean version of the theory is useful if one is interested in properties of the ground state (or

low-lying states, in general). We will see this soon.

• Euclidean version of the path integral is obviously

〈qf |e−Ĥ(τf−τi)|qi〉 = N
∫
Dq(τ) exp

{∫ τf

τi

dτ

[
−1

2
q̇2(τ)− V (q(τ))

]}
! here q̇ =

d

dτ
q(τ)

= N
∫
Dq(τ) exp

{
−
∫ τf

τi

dτ LE(q, q̇)

}

= N
∫
Dq(τ) exp

{
−
∫ τf

τi

dτ SE [q]

}
(2.36)
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— Euclidean action.

!!! Notice sign change for the potential

SM =

∫ tf

ti

dt
[1

2

(
dq

dt

)2

−V (q)
]

SE =

∫ τf

τi

dτ
[1

2

(
dq

dτ

)2

+V (q)
]

(2.37)

The equations of motion (classical)

δSE = SE [q(τ) + δq(τ)]− SE [q(τ)]

=

∫ τf

τi

dτ δq(τ)

[
−d

2q

dτ2
+ V ′(q)

]
!

= 0 (2.38)

so that

d2q

dτ2
= q̈ = +V ′(q) ! sign (2.39)

— Newton equation for the potential −V (q)

• Feynman-Kac formula

Consider a special case qi = qf and integrate over all qi. Obtain∫
dqi 〈qi|e−Ĥ(τf−τi)|qi〉 =

∫
	
Dq(τ) e−SE [q] (2.40)

The expression on the l.h.s. can be viewed as a definition of the trace of an operator, thus

Tr
{
e−Ĥ(τf−τi)

}
=

∫
	
Dq(τ) e−SE [q] (2.41)

Finally, make a formal substitution

τf − τi 7→ β ≡ 1

kBT
(2.42)

and interpret kB as Bolzmann’s constant, T as temperature. Thus

Tr
{
e−βĤ

}
=

∫
	
Dq(τ) e−SE [q] (2.43)

The path integral goes over all closed paths that come back to the initial position after (imaginary)

time 1/β

— This is a path-integral representation of a statistical sum.
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2.3 Semiclassical expansion

• We are working in the system of units where ~ = 1 and restoring this factor

〈qf |e−Ĥ(τf−τi)|qi〉 =

∫
Dq(t) e−

1
~SE [q] (2.44)

Semiclassical approximation means ~→ 0, in other words the action is very large in units of ~. The

path integral will then be dominated by the trajectories where the action is as small as possible.

For the time being everything is Euclidean and I do not write the subscript “E” for brevity

Take some fixed path, q0(τ), and expand to the second order in the deviation:

S[q0 + δq] = S[q0] +

∫ τf

τi

dτ δq(τ)

[
−d

2q0

dτ2
+ V ′(q0)

]

+

∫ τf

τi

dτ

[
−1

2
δq

d2

dτ2
δq +

1

2
(δq)2V ′′(q0)

]
+O(δ3

q ) (2.45)

Now assume that q0(τ) satisfies classical equations of motion (EOM) ⇒ the linear term in δq

vanishes.

We want to take into account contributions of all trajectories in the path integral that are not far

away from the classical path.

q(τ) = q0(τ) + δq(τ) ,

q0(τi) = qi , q0(τf ) = qf , ⇒ δq(τi) = δq(τf ) = 0 (2.46)

• How can one integrate over all such trajectories? One has to parametrize them in some way and

integrate over the parameters.

Let xn(τ) be a complete set of eigenfunctions of the equation

− d2

dτ2
xn(τ) + V ′′

(
q0(τ)

)
xn(τ) = εnxn(τ) (2.47)

with the above boundary conditions, xn(τi) = xn(τf ) = 0. Assume that the solutions are normalized

as ∫ τf

τi

dτ xn(τ)xm(τ) = δmn (2.48)

These solutions form a complete set of functions so that arbitrary function (path) δq(τ) can be

written as a superposition of xn(τ)

δq(τ) =
∑
n

cnxn(τ) (2.49)

Thus in order to integrate over all δq(τ) we can integrate over all coefficients:

Dq(τ) = Dδq(τ) =
∏
n

dcn (2.50)
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On the other hand∫ τf

τi

dτ

[
−1

2
δq

d2

dτ2
δq +

1

2
(δq)2V ′′(q0)

]
=
∑
n

∑
m

cncm

∫ τf

τi

dτ xn(τ)

[
−1

2

d2

dτ2
+

1

2
V ′′(q0)

]
xm(τ)

=
1

2

∑
n

εnc
2
n (2.51)

Therefore if terms of higher order in δq can be neglected∫
Dq e−S[q] =

∫
(
∏
n

dcn) e−S[q0]− 1
2

∑
n εnc

2
n (2.52)

which splits in an (infinite) product of Gaussian integrals

∞∫
−∞

dc e−
1
2
εc2 =

√
2π

ε1/2
(2.53)

Thus we get, to semiclassical accuracy

〈qf |e−Ĥ(τf−τi)|qi〉 = e−S[q0]N

(∏
n

εn

)−1/2

(2.54)

The product of eigenvalues defines a determinant of the differential operator

det

(
− d2

dτ2
+ V ′′(q0(τ))

)
!

=
∏
n

εn (2.55)

so that

〈qf |e−Ĥ(τf−τi)|qi〉 = e−S0N
[
det

(
− d2

dτ2
+ V ′′(q0(τ))

)]−1/2

(2.56)

where S0 = S[q0] is the action on the classical trajectory.

Example: Harmonic oscillator

Take

V (q) =
1

2
ω2q2

τi = 0 , τf = T

qi = 0 , qf = 0
(2.57)

We want to calculate

〈qf = 0|e−ĤT |qi = 0〉 = ? (2.58)

Note that in transition to Euclidean space the potential changes sign
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and the only possibility (classically) to start at the top of the mountain and return to the top after

time T is just to stay at the top all the time!

Thus the solution of classical EOM is obviously

q0(τ) = 0 (2.59)

It follows

SE [q0] = 0 V ′′(q0) = ω2 (2.60)

and therefore

〈q = 0|e−ĤT |q = 0〉 = N
[
det

(
− d2

dτ2
+ ω2

)]−1/2

(2.61)

To calculate the determinant we need solutions of(
− d2

dτ2
+ ω2

)
xn(τ) = εnxn(τ)

xn(0) = xn(T ) = 0 (2.62)

Fortunately this is simple:
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

xn(τ) ∼ sin
(πn
T
τ
)
, εn =

π2n2

T 2
+ ω2 , n = 1, 2, 3, . . . (2.63)

To proceed, split the determinant in a product of two factors:

N
[
det

(
− d2

dτ2
+ ω2

)]−1/2

= N
[
det

(
− d2

dτ2

)]−1/2

︸ ︷︷ ︸
(I)

det
(
− d2

dτ2 + ω2
)

det
(
− d2

dτ2

)
−1/2

︸ ︷︷ ︸
(II)

(2.64)

so that

(I) = N

[ ∞∏
n=1

εn(ω → 0)

]−1/2

= N

[ ∞∏
n=1

π2n2

T 2

]−1/2

§

(II) =

[ ∞∏
n=1

εn
εn(ω → 0)

]−1/2

=

[ ∞∏
n=1

(
1 +

ω2T 2

π2n2

)]−1/2

© (2.65)
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Our representation for (I) is not useful, but we can calculate this factor by observing that it

corresponds to the free motion of the particle without any potential:

(I) = 〈qf = 0|e−
1
2
p̂2T |qi = 0〉 =

∫
dp

2π
〈qf = 0|e−

1
2
p̂2T |p〉〈p|qi = 0〉

=

∞∫
−∞

dp

2π
e−

1
2
p2T |〈q = 0|p〉|2︸ ︷︷ ︸

=1

=
1√
2πT

(2.66)

To calculate (II) use Eq. 1.431.2 from Gradshtein&Ryzhik book:

πy
∞∏
n=1

(
1 +

y2

n2

)
= sinh(πy) , y ↔ ωT

π
(2.67)

Collecting everything

〈qf = 0|e−ĤT |qi = 0〉 =
1√
2πT

(
sinhωT

ωT

)−1/2

=
(ω
π

)1/2 (
2 sinhωT

)−1/2
(2.68)

Expanding at T →∞

〈qf = 0|e−ĤT |qi = 0〉 =
(ω
π

)1/2
e−

1
2
ωT
[
1 +

1

2
e−2ωT + . . .

]
=
∑
N

|ΨN (0)|2e−ENT (2.69)

Thus we read from our expansion

E0 =
1

2
ω , |Ψ0(0)|2 =

(ω
π

)1/2

E2 =

(
1

2
+ 2

)
ω , |Ψ2(0)|2 =

1

2

(ω
π

)1/2
(2.70)

etc. Note that odd N do not contribute for our choice qi = qf = 0 because the wave function at

the origin vanishes.

Two comments are in order:

— the semiclassical result for harmonic oscillator is exact

— notable applications: double well potential, instantons, sphaleron transitions (’t Hooft) Lecture 6

2.4 Path integral representation for Green functions

In what follows I will use a compact notation for time differences

t12
!

= t1 − t2 , (2.71)

etc.

As an example consider a two-point function

G(t1, t2) = 〈Ω|T{φ̂(t1)φ̂(t2)}|Ω〉 (2.72)
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• As the first step, let us show that

G(t1, t2) = θ(t12) lim
tf→+∞
ti→−∞

〈0|e−iĤtf1 φ̂ e−iĤt12 φ̂ e−iĤt2i |0〉
〈0|e−iĤtfi |0〉

+ (t1 ↔ t2) (2.73)

I
Let t1 > t2.

Using the definition of Heisenberg operators the Green function can be written as

〈Ω|eiĤt1 φ̂e−iĤt1eiĤt2 φ̂e−iĤt2}|Ω〉 = eiEvact1〈Ω|φ̂e−iĤt12 φ̂|Ω〉e−iEvact2 (2.74)

For the expression on the r.h.s. use

e−iĤt2i |0〉 ti→−∞= e−iEvact2i |Ω〉〈Ω|0〉

〈0|e−iĤtf1
tf→+∞

= 〈0|Ω〉〈Ω|e−iEvactf1 (2.75)

Then

numerator = |〈0|Ω〉|2e−iEvac(tf1+t2i)〈Ω|φ̂e−iĤt12 φ̂|Ω〉

denominator = |〈0|Ω〉|2e−iEvactfi (2.76)

and

r.h.s. =
numerator

denominator
= eiEvact12〈Ω|φ̂e−iĤt12 φ̂|Ω〉 (2.77)

This is the same expression as in (2.74) so that our relation is correct for t1 > t2. For inverse time

ordering the proof is the same.

J
• The second step is to derive a representation for (2.73) as a ratio of path integrals.

The denominator is simple:

denominator(t1, t2) = 〈0|1l e−iĤtfi1l |0〉

=

∫
dφf

∫
dφi〈0|φf 〉〈φf |e−iĤtfi |φi〉〈φi|0〉

=

∫
dφf e

−ω
2
φ2
f

∫
dφi e

−ω
2
φ2
i

φ(tf )=φf∫
φ(ti)=φi

Dφ(t) eiS[φ] (2.78)

The numerator is more lengthy:

denominator(t1, t2) = 〈0|e−iĤtf1 φ̂ 1l e−iĤt12 φ̂ 1l e−iĤt2i |0〉

=

∫
dφ1

∫
dφ2 〈0|e−iĤtf1 φ̂ |φ1〉〈φ1|e−iĤt12 φ̂ |φ2〉〈φ2|e−iĤt2i |0〉

=

∫
dφ1

∫
dφ2 〈0|e−iĤtf1 |φ1〉φ1〈φ1|e−iĤt12 |φ2〉φ2〈φ2|e−iĤt2i |0〉 (2.79)
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Here we still need to rewrite the matrix elements over the ground state as integrals with the ground

state wave function, and get a product of transition amplitudes for which the path integral rep. is

known.

φ
2

φ
2

i
φ

f
φ

t

φ

φ
1

It is clear that after the integration over φ1 = φ(t1) and φ2 = φ(t2) everything combines into the

single path integral from φi = φ(ti) to φf = φ(tf ) (weighted with wave functions of the ground

state) so we get

numerator(t1, t2) =

∫
dφf Ψ∗0(φf )

∫
dφi Ψ0(φi)

φ(tf )=φf∫
φ(ti)=φi

Dφ(t)φ(t1)φ(t2)eiS[φ] (2.80)

Thus we obtain

G(t1, t2) =

|0〉,tf∫
|0〉,ti

Dφ(t)φ(t1)φ(t2)eiS[φ]

|0〉,tf∫
|0〉,ti

Dφ(t) eiS[φ]

(2.81)

where I used a shorthand notation∫ |0〉,tf
|0〉,ti

Dφ ≡
∫
dφf Ψ∗0(φf )

∫
dφi Ψ0(φi)

∫ φ(tf )=φf

φ(ti)=φi

Dφ (2.82)

This result can be generalized to an arbitrary number of fields

〈Ω|T{φ̂(t1) . . . φ̂(tn)}|Ω〉 =

|0〉,tf∫
|0〉,ti

Dφ(t)φ(t1) . . . φ(tn)eiS[φ]

|0〉,tf∫
|0〉,ti

Dφ(t) eiS[φ]

(2.83)

where it is assumed that ti → −∞ and tf → +∞.

Note:

• The fields φ(tk) in the path integral are functions and can be written in any order.

• Divergent normalization factors cancel in the ratio of path integrals
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2.5 Perturbation theory and the generating functional

Let

S = S0 + SI ,

S0 =

∫
dt

[
1

2
φ̇2 − 1

2
ω2φ2

]
(Harmonic oscillator)

SI =

∫
dt

[
− λ

4!
φ4(t)

]
(2.84)

Now we do not have any operators so forget time ordering and one only needs to Taylor-expand

exponential of the action:

eiS[φ] = eiS0[φ]

{
1− iλ

4!

∫
dt′ φ4(t′) +

1

2

(
− iλ

4!

)2 ∫
dt′1

∫
dt′2φ

4(t′1)φ4(t′2) + . . .

}
(2.85)

— a perturbation theory.

Thus everything we want to know can be calculated in terms of

(
− iλ

4!

)k |0〉∫
|0〉

Dφ(t)φ(t1) . . . φ(tn)φ4(t′1) . . . φ4(t′k) e
iS0[φ] (2.86)

— multiparticle Green functions with unperturbed action!

They can be calculated (all!) using a tool called

• Generating functional

Z[J ]
!

=

|0〉,tf∫
|0〉,ti

Dφ(t) exp
[
iS0[φ] + i

∫
dt J(t)φ(t)

]
|0〉,tf∫
|0〉,ti

Dφ(t) exp
[
iS0[φ]

] (2.87)

– a harmonic oscillator driven by a (weak) time-dependent external force.

Expanding at J(t)→ 0:

Z[J ] = 1 + i

∫
dt J(t)G0(t) +

i2

2

∫
dt1dt2 J(t1)J(t2)G0(t1, t2)

+
i3

6

∫
dt1dt2dt3 J(t1)J(t2)J(t3)G0(t1, t2, t3) + . . . (2.88)

where

G0(t) = 〈0|φ̂(t)|0〉 ,

G0(t1, t2) = 〈0|T{φ̂(t1)φ̂(t2)}|0〉 ,

G0(t1, t2, t3) = 〈0|T{φ̂(t1)φ̂(t2)φ̂(t3)}|0〉 , (2.89)
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etc. One can write

G0(t1, . . . , tn) = (−i)n δ

δJ(t1)
. . .

δ

δJ(tn)
Z[J ]

∣∣
J(t)=0

(2.90)

where the functional derivatives are defined as

δ

δJ(t1)
J(t2) = δ(t1 − t2) (2.91)

• How can one calculate Z[J ]?

Idea: ∫
dx e−Ax

2+Jx∫
dx e−Ax2 =

∫
dx e−A(x− J

2A
)2+ 1

4
J2

A∫
dx e−Ax2 = exp

(
1

4

J2

A

)
(2.92)

Complications:

• We have functions x→ x(t), J → J(t) not numbers

• We have operators A→ Â and need Â−1. Does it exist?

So, let us proceed slowly and carefully.

• We start with the expression in the numerator∫
dφf

∫
dφi e

−ω
2
φ2
f−

ω
2
φ2
i

φ(tf )=φf∫
φ(ti)=φi

Dφ(t) exp

{
i

tf∫
ti

dt

[
1

2
φ̇2 − 1

2
ω2φ2 + Jφ

]}
(2.93)

and make a shift of the integration “variable” in the path integral

φ(t) 7→ φ(t) + η(t) (2.94)

where η(t) is some function. Also

φf,i 7→ φf,i + ηf,i , ηf = η(tf ) , ηi = η(ti) (2.95)

We will eventually choose it in such a way that the linear term in φ(t) vanishes, but wait.

We have in the exponent:

− ω

2
φ2
f −

ω

2
φ2
i + i

tf∫
ti

dt

[
1

2
φ̇2 − 1

2
ω2φ2 + Jφ

]
7→

− ω

2
(φf + ηf )2 − ω

2
(φi + ηi)

2 + i

tf∫
ti

dt

[
1

2
(φ̇+ η̇)2 − 1

2
ω2(φ+ η)2 + J(φ+ η)

]

=− ω

2
η2
f −

ω

2
η2
i + iS0[η] + i

∫ tf

ti

dt Jη (I)

− ωφfηf − ωφiηi + i

∫ tf

ti

dt
[
φ̇η̇ − ω2φη + Jφ

]
(II)

− ω

2
φ2
f −

ω

2
φ2
i + iS0[φ] (III) (2.96)
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• In (II) rewrite integrating by parts

i

∫ tf

ti

dt
dφ

dt

dη

dt
= iφη̇

∣∣∣tf
ti
− i
∫ tf

ti

dt φ(t)
d2

dt2
η(t)

= iφf η̇(tf )− iφiη̇(ti)− i
∫ tf

ti

dt φ(t)
d2

dt2
η(t) (2.97)

Then

(II) = φf

[
iη̇(tf )− ωηf

]
+ φi

[
− iη̇(ti)− ωηf

]
+ i

∫ tf

ti

dt φ(t)
[(
− d2

dt2
− ω2

)
η(t) + J(t)

]
(2.98)

We want to choose η that (II) = 0 for arbitrary φ(t). This requires

A) Differential equation to be satisfied( d2

dt2
+ ω2

)
η(t) = J(t) (2.99)

B) Boundary conditions to be satisfied

iη̇(tf ) = ωη(tf ) ,

iη̇(ti) = −ωη(ti) (2.100)

This means that we need solutions such that

η(t) ∼ e−iωt for t→ +∞ (tf )

η(t) ∼ e+iωt for t→ −∞ (ti) (2.101)

The solution is then

η(t) = i

∫ tf

ti

dt′D(t− t′)J(t′) (2.102)

where D(t− t′) is the particular Green function of the differential operator (2.99)( d2

dt2
+ ω2

)
D(t− t′) = −iδ(t− t′) (2.103)

that satisfies the same boundary conditions:

D(t− t′) =
1

2ω

[
θ(t− t′)e−iω(t−t′) + θ(t′ − t)e+iω(t−t′)

]
=

1

2ω
e−iω|t−t

′| (2.104)

• Now we have to substitute our solution for η(t) in (I). We have

(I) = −ω
2
η2
f −

ω

2
η2
i + i

∫ tf

ti

dt
[1

2
η̇2 − 1

2
ω2η2

]
+ i

∫ tf

ti

dt J(t)η(t)

p.I
=
���

���
���

��

−ω
2

(η2
f + η2

i ) +
i

2
ηη̇
∣∣∣tf
ti

+ i

∫ tf

ti

dt η(t)
[
− 1

2

d2

dt2
− 1

2
ω2
]
η(t)︸ ︷︷ ︸

=− 1
2
J(t)

+i

∫ tf

ti

dt J(t)η(t)

=
1

2
i

∫ tf

ti

dt J(t)η(t) = −1

2

∫
dtdt′J(t)D(t− t′)J(t′) (2.105)
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Finally, (III) gets cancelled by the denominator so we get

Z[J ] = exp

[
−1

2

∫
dtdt′ J(t)D(t− t′)J(t′)

]
(2.106)

From this answer for the generating functional we immediately get the Green functions:

G0(t1, t2) = (−i)2 δ

δJ(t1)

δ

δJ(t2)
Z[J ]

∣∣
J(t)=0

= D(t1 − t2) ,

G0(t1, t2, t3) = 0

G0(t1, t2, t3, t4) = G0(t1 − t2)G0(t3 − t4) +G0(t1 − t3)G0(t2 − t4) +G0(t1 − t4)G0(t2 − t3)

etc. (2.107)

⇔ Wick theorem ⇒ Feynman Diagrams:

◦ −iλ
4!

∫
dt Vertex

◦ t

1

t

2 D(t1 − t2) Propagator

◦ Combinatorial Factors (2.108)

⇔ same rules as in canonical quantization.

To summarize: path integral quantization in quantum mechanics is equivalent to canonical quan-

tization, at least in perturbation theory. Offers new and powerful methods. Lecture 7

3 Scalar field theory

• We can overtake this formalism as a definition of a quantum field theory

φ(t) 7→ φ(~x, t) = φ(x) (3.1)

〈Ω|T{φ̂(x1) . . . φ̂(xn)}|Ω〉 =

|0〉,tf∫
|0〉,ti

Dφφ(x1) . . . φ(xn)eiS[φ]

|0〉,tf∫
|0〉,ti

Dφ eiS[φ]

(3.2)

For example the usual scalar theory

S[φ] =

∫
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4

]
= S0 + SI (3.3)
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• Let us calculate the generating functional in this theory using a shortcut method:

Z[J ] =

∫
Dφ exp

{
i
∫
d4x

[
1
2∂µφ∂

µφ−

→ 1
2

(m2−iε)φ2︷ ︸︸ ︷
1

2
m2φ2 +Jφ

]}
∫
Dφ exp

{
iS0

} (3.4)

Write the fields in terms of the Fourier components:

φ(x) =

∫
d4p

(2π)4
e−ipxφ(p) ,

J(x) =

∫
d4p

(2π)4
e−ipxJ(p) ,

∫
d4x ei(p−p

′)x = (2π)4δ(4)(p− p′)

∂µφ(x) =

∫
d4p

(2π)4
(−ipµ)e−ipxφ(p) (3.5)

Putting everything together and combining some terms to get a full square get

i

∫
d4x[. . .] =

i

2

∫
d4p

(2π)4

[(
φ(p) +

J(p)

p2 −m2 + iε

)[
p2 −m2 + iε

](
φ(−p) +

J(−p)
p2 −m2 + iε

)

− J(p)J(p′)[
p2 −m2 + iε

]] (3.6)

and introduce a new variable

φ′(x) =

∫
d4p

(2π)4
e−ipx

(
φ(p) +

J(p)

p2 −m2 + iε

)
Dφ = Dφ′ (3.7)

Obtain

Z[J ] = exp

{
− i

2

∫
d4p

(2π)4

J(p)J(p′)

p2 −m2 + iε

}
(3.8)

or, equivalently

Z[J ] = exp

{
−1

2

∫
d4xd4y J(x)∆(x− y)J(y)

}
(3.9)

with

∆(x− y) =

∫
d4p

(2π)4i
e−ip(x−y) 1

m2 − p2 − iε
(3.10)

Here from get the Green functions in the free theory

G0(x1, . . . , xn) = (−i)n δ

δJ(x1)
. . .

δ

δJ(xn)
Z[J ]

∣∣
J(t)=0

(3.11)
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and for example

G0(x1, x2) = ∆(x1 − x2) propagator (3.12)

Green functions in the interacting theory are then calculated as a perturbative expansion

〈Ω|T{φ̂(x1)φ̂(x2)}|Ω〉 =
x

1

x

2

(3.13)

3.1 Equations of motion

• Klein-Gordon equation [= equation of motion (EOM)]

(�x +m2)φ(x) = 0 ⇐ free field

(�x +m2)φ(x) +
λ

3!
φ3 = 0 ⇐ with interactions (3.14)

Does this mean that (promoting φ→ φ̂) all matrix elements of such an object vanish?

Does this mean that all insertions of such an object in Green functions vanish?

〈Ω|T
{[

(�x +m2)φ̂+
λ

3!
φ̂3
]
(x)φ̂(x1) . . . φ(xn)

}
|Ω〉 = ? (3.15)

If

〈Ω|T
{
φ̂(x)φ̂(x1) . . . φ(xn)

}
|Ω〉 = N

∫
Dφφ(x)φ(x1) . . . φ(xn)eiS[φ] (3.16)

(here N stands for the path integral in denominator), then

(�x +m2)〈Ω|T
{
φ̂(x)φ̂(x1) . . . φ(xn)

}
|Ω〉 = N

∫
Dφ (�x +m2)φ(x)φ(x1) . . . φ(xn)eiS[φ] (3.17)

We want to calculate this.

• A very important trick (comes now): Integration by parts in the path integral.

Consider

S[φ+ δφ]− S[φ] ≡
∫
d4x δφ(x)

δ

δφ(x)
S[φ] + . . .

S[φ+ δφ]− S[φ]
p.I
=

∫
d4x

[
−�xφ−m2φ− λ

3!
φ3
]
δφ(x) (3.18)

where the first line comes from the definition of functional derivative and the second line from

explicit calculation. Thus[
(�x +m2)φ(x) +

λ

3!
φ3(x)

]
eiS[φ] = i

δ

δφ(x)
eiS[φ] (3.19)
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Therefore (continue with three external fields as example)

N
∫
Dφ (�x +m2)φ(x)φ(x1)φ(x2)φ(x3)eiS[φ]

= N
∫
Dφφ(x1)φ(x2)φ(x3)

[
− λ

3!
φ3(x) + i

δ

δφ(x)

]
eiS[φ]

= − λ

3!
〈Ω|T

{
φ̂3(x)φ̂(x1)φ̂(x2)φ̂(x3)

}
|Ω〉 − iN

∫
Dφ eiS[φ] δ

δφ(x)

[
φ(x1)φ(x2)φ(x3)

]
= − λ

3!
〈Ω|T

{
φ̂3(x)φ̂(x1)φ̂(x2)φ̂(x3)

}
|Ω〉 − iδ(4)(x− x1)〈Ω|T

{
φ(x2)φ̂(x3)

}
|Ω〉

− iδ(4)(x− x2)〈Ω|T
{
φ(x1)φ̂(x3)

}
|Ω〉 − iδ(4)(x− x3)〈Ω|T

{
φ(x1)φ̂(x2)

}
|Ω〉 (3.20)

Thus

〈Ω|T
{[

(�x +m2)φ̂+
λ

3!
φ̂3
]
(x)︸ ︷︷ ︸

EOM

φ̂(x1)φ̂(x2)φ̂(x3)
}
|Ω〉 = −iδ(4)(x− x1)〈Ω|T

{
φ(x2)φ̂(x3)

}
|Ω〉

− iδ(4)(x− x2)〈Ω|T
{
φ(x1)φ̂(x3)

}
|Ω〉

− iδ(4)(x− x3)〈Ω|T
{
φ(x1)φ̂(x2)

}
|Ω〉
(3.21)

A generalization to an arbitrary number of extra fields is obvious.

Particular cases:

• No extra fields

〈Ω|
[
(�x +m2)φ̂+

λ

3!
φ̂3
]
(x)|Ω〉 = 0 (3.22)

— Matrix elements of EOM operators vanish.

• Free theory λ = 0, one extra field

(�x +m2)〈0|T
{
φ̂(x)φ̂(x1)

}
|0〉 = −iδ(4)(x− x1) (3.23)

— the propagator is a Green function of (�x +m2) (as it should).

3.2 Reminder: UV divergences

Going over from QM (finite number of degrees of freedom) to QFT (infinite number of d.o.f’s) leads

to a major problem — divergences at large momenta/small distances. A short reminder how they

appear:

Consider a momentum-space Green function

G(p1, p2, p3, p4) = i4
∫
d4x1 . . . d

4x4 e
−ix1p1−ix2p2+ix3p3+ix4p4〈Ω|T{φ̂(x1) . . . φ̂(x4)}|Ω〉

=
(2π)4δ(4)(p1 + p2 − p3 − p4)iM

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)(p2

4 −m2)
(3.24)
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iM is usually called scattering amplitude as is given by a sum of Feynman diagrams with “ampu-

tated legs”

iM =

p

1

p

2

p

4

p

3

p

1

p

2

p

4

p

3

= iλ + quantum corrections (3.25)

The first nontrivial diagram p = p1 + p2 = p3 + p4

T =

p

4

p

3

p

1

p

2

k

k � P

= (−iλ)2

symmetry factor︷︸︸︷
1

2

∫
d4k

(2π)4

i

[k2 −m2 + iε]

i

[(p− k)2 −m2 + iε]

(3.26)

Use Feynman’s formula to combine the denominators:

1

AB
=

∫ 1

0
dα

1

[αA+ ᾱB]2
ᾱ = 1− α (3.27)

to get

T =
1

2
λ2

∫ 1

0
dα

∫
d4k

(2π)4

1

[αk2 + ᾱ(k − p)2 −m2 + iε]2
(3.28)

Rewrite

αk2 + ᾱ(k − p)2 = (k − ᾱp)2 + αᾱp2

and make a shift in the integration variable k → k + ᾱp. Obtain

T =
1

2
λ2

∫ 1

0
dα

∫
d4k

(2π)4

1

[k2 + αᾱp2 −m2 + iε]2
(3.29)

Calculate this integral using analytic continuation to the complex k0 plane (Minkowski → Eu-

clidean) k0 → ik4:

Re k

Im k

0

0

Re k

Im k

0

0

d4k = dk0d
3~k = idk1 . . . dk4 = id4kE

k2 = k2
0 − ~k2 = −(k2

1 + . . . k2
4) = −k2

E (3.30)
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so that ∫
d4k

1

[k2 − a2 + iε]2
= i

∫
d4kE

1

[k2
E + a2]2

(3.31)

and if a2 > 0 (small momenta) then the iε is no more needed.

The remaining integral can be calculated Euler’s parametrization of the solid angle in generic

N -dimensional space:

(k1 . . . kn) 7→ (k, φ, θ1, . . . θN−2)∫
dNk =

∫ ∞
0
dk kN−1

∫ 2π

0
dφ

∫ π

0
sin θ1dθ1 . . .

∫ π

0
sinN−2 θN−2dθN−2

=

∫ ∞
0
dk kN−1

∫
dΩN (3.32)

Then ∫
dNk F (k2) =

2πN/2

Γ[N/2]

∫ ∞
0
dk kN−1 F (k2) =

πN/2

Γ[N/2]

∫ ∞
0

∫ ∞
0
dk2 kN−2 F (k2) (3.33)

We need N = 4 in which case get

i

∫
d4kE

1

[k2
E + a2]2

= iπ2

∫ ∞
0
dk2 k2

[k2 + a2]2
(3.34)

and collecting everything obtain

T =
1

2
λ2

∫ 1

0
dα

1

(2π)4
iπ2

∫ ∞
0
dk2 k2

[k2 +m2 − αᾱp2]2
(3.35)

This would be the end of the story (almost) but the integral diverges. We can try to cut off the

k2-integral at large momenta (so-called cutoff regularization) introducing some large scale

M2 � m2, p2

∫ ∞
0

dk2
E 7→

∫ M2

0
dk2

E (3.36)

and obtain in this way∫ M2

0
dk2 k2

[k2 +m2 − αᾱp2]2
= − M2

M2 +m2 − αᾱp2
+ ln

m2 − αᾱp2 +M2

m2 − αᾱp2

→ −1 + ln
M2

m2 − αᾱp2
(3.37)

leading to

T = − i
2

λ2

16π2

∫ 1

0
dα
[
1− ln

M2

m2 − αᾱp2

]
(3.38)

This is finite but depends on (unphysical) parameter M .

This situation is generic for (almost) all QFTs. We have to understand what to do with such

ill-defined expressions.
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3.3 Wilsonian Effective Action

The same problem apparently affects the path integral, so it has to be defined with some restrictions

on the allowed paths. In any case some cutoff is necessary. In this section consider Euclidean version

of the φ4 theory in generic d dimensions: We will see interesting differences for d=2,3,4; I do not

intend using dimensional regularization.

• Define

W =

∫
[Dφ]M exp

{
−
∫
ddx

[
1

2
(∂µφ)2 +

1

2
m2φ2 +

λ

4!
φ4

]}
(3.39)

where

[Dφ]M =
∏
|k|<M

dφk , φ(x) =

∫
|k|<M

ddk

(2π)d
eikxφ(k) (3.40)

The parameter M can be thought of as a boundary of our knowledge: Usually we assume that our

theory is valid for all distances from large to small (zero), but this may be too simplistic as the

theory may change drastically at very small distances where we have no experimental data. If we

do not know the “fundamental” theory at very small distances, why can we make any predictions

for large distances? Actually we know that we can, and the work by Wilson was motivated by the

theory of phase transitions in condensed matter physics where from we know that the properties

of matter do not depend very much on the underlying atomic structure.

Question asked by Wilson: what happens if we change M? Can it be that changing M and adjusting

some parameters in the Lagrangian we end up with the same physical predictions?

• Let

µ < M (3.41)

and split the fields in the path integral in “fast” and “slow”

φ(k) = Φ(k) + ϕ(k) (3.42)

so that

Φ(k) : 0 < k < µ slow fields

ϕ(k) : µ < k < M fast fields (3.43)

Then

W =

∫
[DΦ]µ[Dϕ]Mµ e

−S[Φ+ϕ] !
=

∫
[DΦ]µe−Seff [Φ,µ] (3.44)
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or

e−Seff [Φ] !
=

∫
[Dϕ]Mµ e

−S[Φ+ϕ] (3.45)

Seff [Φ, µ] is called Wilsonian effective action

• In our case

S[Φ + ϕ] = S[Φ] +
���

���
���

��∫
ddxϕ(x)

δ

δΦ(x)
S[Φ] + S[ϕ] +

∫
ddx
[λ

4
Φ2(x)ϕ2(x) +

λ

6
Φ(x)ϕ3(x)

]
(3.46)

Linear terms in ϕ can be neglected because a fast field cannot decay in slow fields (apart from

small corrections). One can also argue that calculating the path integral over fast fields ϕ one can

consider Φ(x) as external classical fields so that they satisfy classical EOM δ
δΦ(x)S[Φ] = 0. Thus

we get

e−Seff [Φ] = eS[Φ]

∫
[Dϕ]Mµ exp

{
−
∫
d4x
[1

2
(∂µϕ)2 +

1

2
m2ϕ2 +

λ

4!
ϕ4 +

λ

4
Φ2ϕ2 +

λ

6
Φϕ3

]}
(3.47)

so that the effective action is given by the usual action plus corrections that we will try to evaluate

in perturbation theory.

To simplify calculations assume that λ and m are small and use perturbative expansion both in λ Lecture 8

and m. Thus choose

S0[ϕ] =

∫
ddx

1

2
(∂µφ)2 ,

SI [ϕ,Φ] =

∫
d4x
[1

2
m2φ2 +

λ

4!
φ4 +

λ

4
Φ2ϕ2 +

λ

6
Φϕ3

]
(3.48)

We can write∫
[Dϕ]Mµ e

S0[ϕ]+SI [ϕ,Φ] =

∫
[Dϕ]Mµ e

S0[ϕ]︸ ︷︷ ︸
N

∫
[Dϕ]Mµ e

S0[ϕ]+SI [ϕ,Φ]∫
[Dϕ]Mµ e

S0[ϕ]

= N〈0|Texp

{
−
∫
ddx

[
1

2
m2φ̂2 +

λ

4!
φ̂4 +

λ

4
Φ2ϕ̂2 +

λ

6
Φϕ̂3

]}
|0〉 (3.49)

⇒ Feynman diagrams:

�

'

m

2

The propagator of the fast field, formally

y

x =

|pE |<M∫
|pE |>µ

ddpE
(2π)d

e−ipE(x−y) 1

p2
E

(3.50)

but finite interval is often only necessary if one encounters divergent integrals. Otherwise, replacing

integration over µ < |pE | < M by the integral over the whole space usually produces corrections
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(∼ P/µ)k where P is some external momentum such that |P | � µ (because we use µ as a cutoff)

that can be neglected

Note that for effective action we need diagrams with arbitrary number of external legs, but to the

first few orders in λ, m2, only a few diagrams contribute:

O(�)

O(�

2

)

2

• Example I (simplest)

← 〈Ω|T
{
−
∫
ddx

λ

4
Φ2(x)ϕ2(x)

}
|Ω〉

= −λ
4

∫
ddxΦ2(x)〈Ω|T{ϕ(x)ϕ(x)}|Ω〉

!
= −1

2

∫
ddxΦ2(x)δm2 (3.51)

where

δm2 =
λ

2
〈Ω|T{ϕ(x)ϕ(x)}|Ω〉 =

λ

2

|pE |<M∫
|pE |>µ

ddpE
(2π)d

���
���

e−ipE(x−x) 1

p2
E +��m

2

=
λ

(4π)d/2
1

Γ[d/2]

1

d− 2

[
Md−2 − µd−2

]
(3.52)

— is some number. In higher orders we will get diagrams of the same type

+

2

1

2

+

1

3!

3

= exp
{
− 1

2

∫
ddxΦ2(x)δm2

}
(3.53)

The effective action, therefore, receives a contribution

Seff 3

S[Φ]︷ ︸︸ ︷
−1

2

∫
ddxΦ2(x)

(
m2 +δm2

)
(3.54)

— mass renormalization (the value of mass parameter changes).
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• Example II (less simple)

← 1

2

(
−λ

4

)2 ∫
ddx

∫
ddy 〈Ω|T

{
Φ2(x)ϕ2(x)ϕ2(y) Φ2(y)

}
|Ω〉

=
1

2

(
−λ

4

)2

2

∫
ddx

∫
ddyΦ2(x)Φ2(y)

∫
ddk1

(2π)d
e−ik1(x−y) 1

k2
1

∫
ddk2

(2π)d
eik2(x−y) 1

k2
2

(3.55)

This is a nonlocal contribution: Φ2(x) and Φ2(y) are at different space-time positions. Let us try

to expand and see what comes out:

Φ2(y) = Φ2(x) + (y − x)µ∂µΦ2(x) +
1

2
(y − x)µ(y − x)ν∂µ∂νΦ2(x) + . . . (3.56)

Consider the first term. The y-integration becomes trivial∫
ddy eiy(k1−k2) = (2π)dδ(k1 − k2) (3.57)

and we get

. . . =
1

2

(
−λ

4

)2

2

∫
ddxΦ4(x)

∫
ddk

(2π)d
1

k4

!
= − 1

4!

∫
ddxΦ4(x) δλ (3.58)

with

δλ = −4!

(
λ

4

)2 ∫ ddk

(2π)d
1

k4

= −4!

(
λ

4

)2 1

(4π)d/2
1

Γ[d/2]

M2∫
µ2

dk2 kd−2 1

k4

= − 3λ2

(4π)d/2
1

Γ[d/2]

1

d− 4

(
Md−4 − µd−4

)
(3.59)

If d = 4 we can recalculate the integral anew or use that for d− 4→ 0

Md−4 = e(d−4) lnM = 1 + (d− 4) lnM +O((d− 4)2) (3.60)

to get

δλ
∣∣∣
d=4

= − 3λ2

16π2
ln
M

µ
(3.61)

This diagrams will be repeated in higher orders with 1/k! coefficients so the the result will expo-

nentiate

∑
k

1

k!

 k

= exp


 = exp

{
− 1

4!

∫
ddxΦ4(x) δλ

}
(3.62)
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This has the same form as the interaction term φ4 in the original action, so that effectively

λ→ λ+ δλ .

• On these two examples we see that the difference of the effective action from the original one

amounts to modification of parameters. But we also get new terms:

: Φ2(x)Φ2(y) = . . . +
1

2
(y − x)µ(y − x)νΦ2(x)∂µ∂νΦ2(x)

7→
∫
ddx Φ2(x)∂2Φ2(x) δA

: 7→
∫
ddx Φ6(x) δB (3.63)

so that the effective Lagrangian is of the form

Leff =
1

2

(
1 + δZ

)
(∂µΦ)2 +

1

2

(
m2 + δm2

)
Φ2 +

1

4!

(
λ+ δλ

)
Φ4

+ δAΦ2∂2Φ2 + δB Φ6 + . . . (3.64)

i.e. it contains an (infinite) tail of higher-dimension terms. If such terms necessarily appear when

one changes the cutoff, it seems there is no reason why they were absent in the original action. So,

maybe we have to add them and then an effective Lagrangian becomes

Leff =
1

2

(
1 + δZ

)
(∂µΦ)2 +

1

2

(
m2 + δm2

)
Φ2 +

1

4!

(
λ+ δλ

)
Φ4

+
(
A+ δA

)
Φ2∂2Φ2 +

(
B + δB

)
Φ6 + . . . (3.65)

• Note, however, that we need to compare the resulting Green functions, i.e. results after path

integration, but not just the integrands. In order to do this, we have to

(1) Rescale the coordinates/momenta so that the integration regions are the same:

k′ = k
M

µ
, x′ = x

µ

M
(3.66)

Let

r =
µ

M
, rescaling factor (3.67)

then, e.g., ∫ µ

0
ddk = rd

∫ M

0
ddk′ ,

∫
ddx = r−d

∫
ddx′ ,

∂

∂xµ
= r

∂

∂x′µ
(3.68)
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and therefore∫
ddxLeff =

∫
ddx′ r−d

{
1

2

(
1 + δZ

)
r2(∂µΦ)2 +

1

2

(
m2 + δm2

)
Φ2 +

1

4!

(
λ+ δλ

)
Φ4

+
(
A+ δA

)
r2 Φ2∂′2Φ2 +

(
B + δB

)
Φ6 + . . .

}
(3.69)

(2) Rescale the field to get the same free propagator (related to state normalization)

Φ′ =
[
r2−d(1 + δZ)

]1/2
Φ (3.70)

Then∫
ddxLeff =

∫
ddx′

{
1

2
(∂µΦ′)2 +

1

2
m′2Φ′2 +

λ′

4!
Φ′4 +A′Φ′2∂′2Φ′2 +B′Φ′6 + . . .

}
(3.71)

where

m′2 = (m2 + δm2)(1 + δZ)−1r−2

λ′ = (λ+ δλ)(1 + δZ)−2rd−4

A′ = (A+ δA)(1 + δZ)−2rd−2

B′ = (B + δB)(1 + δZ)−3r2d−6 (3.72)

Thus we get the same action as before (with modified parameters) and can discuss what is the

effect.

• Consider the usual quartic interaction ∼ Φ4 for d = 4. We get

λ′ = λ− 3λ2

16π2
ln
M

µ
+O(λ3) (3.73)

— the running coupling: λ 7→ λ(M), λ′ 7→ λ(µ)

λ(µ) = λ(M)− 3λ2(M)

16π2
ln
M

µ
+O(λ3 ln2M/µ) (3.74)

The expansion becomes ill-behaved if λ(µ) ln(M/µ) = O(1) and has to be resummed. This is done

going over to the differential equation (renormalization group equation)

dλ2

d lnµ
=

3

16π2
λ2(µ) +O(λ3) = β(λ) Beta function (3.75)

Note that in this series there cannot be any large logarithms on the r.h.s. because there is only one

scale µ involved. Thus the expansion is well-behaved (so long as the coupling is small).

To solve this equation, write

dλ−1(µ)

d lnµ
= − 1

λ2(µ)

dλ(µ)

d lnµ
= − 3

16π2
(3.76)
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so that 
1

λ(µ)
=

1

λ0
− 3

16π2
lnµ

1

λ(M)
=

1

λ0
− 3

16π2
lnM

⇒ λ(µ) =
λ(M)

1 + 3λ2(M)
16π2 ln M

µ

(3.77)

or choose

1

λ0

!
=

3

16π2
ln Λ ⇒ λ(µ) =

16π2

3 ln
Λ

µ
µ

λ(µ)

: (3.78)

— the coupling increases at small distances alias decreases at large distances (screening by vacuum

polarization)

• Now consider contributions of higher dimension. Up to logarithmic corrections from δZ

A′ ' A
( µ
M

)d−2
⇒ A(µ) ' A(M)

( µ
M

)d−2
(3.79)

and becomes negligibly small at µ << M if d > 2 (and A(M) is some “reasonable” number).

Similar

B′ ' B
( µ
M

)2d−6
⇒ B(µ) ' B(M)

( µ
M

)2d−6
(3.80)

and becomes negligibly small at µ << M if d > 3 (and B(M) is some “reasonable” number). Such

interactions are called “irrelevant” in condensed matter physics community

• Example: Coupling unification in the Standard Model

from: V.Barger et al. PLB 624 (2005) 233
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At the scales 1015− 1014 GeV all three known fundamental interactions (strong, weak and electro-

magnetic) become equally strong. Expect the theory is modified in some way, also maybe including

gravity. If this is the case, one should expect to have a sequence of “irrelevant” interactions sup-

pressed as (
momenta probed in our experiments

new physics scale

)2(?)

There is currently a fashionable direction of research, people try to find traces of such interactions

(so far without much success). Lecture 9

3.4 Nonlinear σ-model in d = 2

• Spin-vector field:

~n(x)
∑
a

nana = 1 a = 1, 2, . . . , N (3.81)

(N-component vector with unit length, lives in two dimensions xµ = {x1, x2}.

Lagrangian density

L =
N

2g
(∂µn

a(x))(∂µna(x)) µ = 1, 2 (3.82)

This looks like as free field (with N components), but the condition |~n|2 = 1 makes the system

highly nontrivial.

• We can try to solve this constraint explicitly, writing

na = {π1, . . . , πN−1, σ} , σ = (1− |~π|2)1/2 (3.83)

(Historically, sigma-models were first considered as a model for pion interactions;

→ the notation π(x), “pions”.) Then

∂µσ =
1

2

−2πa∂µπ
a√

1− |~π|2
(3.84)

and

[∂µn
a]2 = [∂µπ

a]2 + [∂µσ]2 = [∂µπ
a]2 +

(~π · ∂µ~π)2

1− π2
(3.85)

Thus we can define the quantum theory writing the path integral in terms of (independent) π-fields

W = N
∫
Dπ e−

∫
d2xL(x) (3.86)

with the Lagrangian density

L =
N

2g

[
(∂µπ

a)2 +
(πa∂µπ

a)2

1− π2

]
(3.87)
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Perturbation theory for this path integral contains a “pion” propagator (massless scalar) and a

bunch of vertices corresponding to the expansion 1/(1− π2) = 1 + π2 + π4 + . . .

�

This looks like a theory of N − 1 massless particles (pions) π1, . . . πN−1

• Note that the initial Lagrangian is invariant under rotations of the n-field

na 7→ n′a = Rabn
b RTR = 1l O(N)− symmetry (3.88)

(and therefore the choice of N -th component as a sigma-field is just a convention), but the theory

in terms of pions seems to have a smaller symmetry

πa 7→ π′a = Rabπ
b RTR = 1l O(N − 1)− symmetry (3.89)

How could this happen?

— The Lagrangian in terms of π fields still has O(N) symmetry — this was just a rewriting so the

symmetry could not disappear, it is hidden in the relations between different vertices.

— BUT the ground state (vacuum) is not O(N) symmetric:

〈Ω|π(x)|Ω〉 = 0 by construction there are no particles in vacuum

〈Ω|σ(x)|Ω〉 = 1 σ = 1 if there is no pion field (3.90)

This kind of symmetry breaking (Hamiltonian is symmetric but the ground state not) is called

spontaneous symmetry breaking; we we study this phenomenon in detail later.

Thus, our expectation seems to be that the Lagrangian in (3.82) describes the system of N − 1

massless particles, and the O(N) symmetry of the Lagrangian is broken spontaneously to O(N−1).

We will see, however, that both statements are wrong. . .

N.B. The theory in terms of π-fields is renormalizable despite having infinite number of vertices:

O(N) symmetry ensures that all couplings are related, and these relations will be maintained if the

regularization procedure does not break the symmetry explicitly.

• Let us try differently and start with a path integral in terms of original fields inserting the n2 = 1

condition explicitly:

W = N
∫
Dn(x) exp

[
−
∫
d2x

N

2g
(∂µn

a)2(x)
]∏

x

δ(n2(x)− 1) (3.91)

How to rewrite an infinite product of δ-functions in a more manageable way?

δ(y) =
1

2π

∫ ∞
−∞

dα eiαy ⇒ δ(n2(x)− 1) = N
∫
dαxe

αx(n2(x)−1) (3.92)
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The product of such factors for each point x van be viewed as a path integral over a new field

αx ≡ α(x) ∏
x

δ(n2(x)− 1) = N
∫
Dα(x) exp

[
i

∫
d2xα(x)(n2(x)− 1)

]
(3.93)

Thus we get

W = N
∫
Dn(x)Dα(x) exp

{
−
∫
d2x

[N
2g

(∂µn
a)2(x) + iα(x)(n2(x)− 1)

]}
(3.94)

This construction is usually called introduction of an auxiliary field.

For what follows it is convenient to rescale the fields in the following way:

n(x) 7→ n(x)

(
N

g

)−1/2

,

iα(x) 7→ α(x)

√
N

g

1

2
(3.95)

Thus we want to calculate the generating functional, in this notation

W [J ] = N
∫
Dn(x)Dα(x) exp

{
−
∫
d2x

[1

2
(∂µn

a)2(x) +
1

2

α(x)√
N

(
n2 − N

g

)
+ Ja(x)na(x)

]}
(3.96)

Advantage of this representation is that the path integral over n-fields can be taken explicitly.

Let Aij be a real symmetric d× d matrix. Then (cf. Sec. 2.3 and 2.5)∫
ddx e−

1
2
xiAijxj = (2π)d/2(detA)−1/2 (3.97)

and this can be generalized for hermitian operators to give∫
Dn(x) exp

{
−
∫
d2x

[1

2
(∂µn)2(x) +

1

2

α(x)√
N
n2(x) + J(x)n(x)

]}

= N
[
det
(
− ∂2 +

α(x)√
N

)]−N/2
exp

{
1

2

∫
d2xd2y Ja(x)〈x| 1

−∂2 + α/
√
N
|y〉Ja(y)

}
(3.98)

Here I used a notation (Schwinger) for the matrix element of the inverse operator 〈x| . . . |y〉 that I

did not use before. In the same notation the propagator can be written as (here Euclidean space!)

∆(x− y) =

∫
ddp

(2π)d
e−ip(x−y) 1

p2 +m2
= 〈y| 1

−∂2 +m2
|x〉 (3.99)

Check:

〈y| 1

−∂2 +m2
|x〉 =

∫
ddp

(2π)d
〈y| 1

−∂2 +m2
|p〉〈p|x〉 =

∫
ddp

(2π)d
〈y|p〉 1

p2 +m2
〈p|x〉 (3.100)

Finally, use

detM = exp
[
Tr lnM

]
(3.101)

to get
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W [J ] = N
∫
Dα(x) exp

{
−Seff [α] +

1

2

∫
d2xd2y J(x)〈x|(−∂2 + α/

√
N)−1|y〉J(y)

}

Seff [α] =
N

2
Tr ln

[
−∂2 +

α(x)√
N

]
−
∫
d2x

√
N

2g
α(x) (3.102)

• So far all manipulations were exact, we did not make any assumptions, but in order to move

further we have to make some approximation.

• Main idea: try to consider N as a large number and construct a 1/N expansion (instead of the

expansion in the coupling g. It turns out that the large-N expansion leads to the semiclassical

expansion of the path integral over the auxiliary field α(x) so that the path integral is dominated

(for large N) by trajectories that deviate not much from the solution of classical EOM (classical

trajectory):

α(x) = α0(x)︸ ︷︷ ︸
classical path

+ αq(x)︸ ︷︷ ︸
quantum fluctuations

(3.103)

Since all points in our two-dimensional space are “equal”, the classical path (if it exists!) cannot

depend on x and can only be a constant in space. For the reasons that will become clear later, let

us denote this constant as

α0(x) = α0 =
√
Nm2 (3.104)

We require

δSeff
δα(x)

∣∣∣∣
α(x)=

√
Nm2

= 0 (Euler-Lagrange) (3.105)

To expand the effective action in αq use

Tr ln

[
−∂2 +

α(x)√
N

]
= Tr ln

[
−∂2 +m2 +

αq(x)√
N

]
= Tr

{
ln(−∂2 +m2) + ln

[
1 +

1

−∂2 +m2

αq(x)√
N

]}
(3.106)

and

ln(1 + x) = −
∞∑
k=1

(−1)k

k
xk (3.107)

so that

Seff [
√
Nm2 + αq] =

N

2
tr ln(−∂2 +m2)−

∫
d2x

m2N

2g
−
√
N

2g

∫
d2xαq(x)

− N

2

∞∑
k=1

(−1)k

k
Tr

[(
1

−∂2 +m2

αq(x)√
N

)k]
(3.108)
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The linear term in αq has to vanish (this is an equation on m2)

N

2
Tr

[
1

−∂2 +m2

αq(x)√
N

]
−
√
N

2g

∫
d2xαq(x)

!
= 0 (3.109)

Here
√
N

2
Tr

[
1

−∂2 +m2
αq(x)

]
=

√
N

2

∫
d2x 〈x| 1

−∂2 +m2
αq(x)|x〉

=

√
N

2

∫
d2xαq(x)

∫
d2p

(2π)2

1

p2 +m2
(3.110)

The integral is divergent (has to be expected), so let us introduce a cutoff∫
|p|<M

d2p

(2π)2

1

p2 +m2
=

1

4π
ln
M2

m2
(3.111)

Thus our Euler-Lagrange Eq. (3.109) takes the form

1

g
=

1

4π
ln
M2

m2
”Gap Equation” (3.112)

This is the standard situation; we have to assume g → g(M) and introduce the running coupling in

such a way that m2 (which is a physical quantity as we will see) remains constant when we change

the cutoff:

1

g(µ)
=

1

4π
ln
µ2

m2
(3.113)

The solution of our Euler-Lagrange Eq. is then

m2 = M2 exp

(
− 4π

g(M)

)
= µ2 exp

(
− 4π

g(µ)

)
∀µ (3.114)

Note that this result for m2 is nonperturbative, i.e. it cannot be obtained in perturbation theory

in the coupling g. Famous mathematical example

f(x) = e−1/x = 0 + 0 · x+ 0 · x2 + . . . (3.115)

has zero Taylor expansion at x = 0 (all derivatives vanish). This explains the failure of our original

guess on the structure of this theory.

• The next step would be to integrate over small fluctuations around the classical solution. To

this end one needs to consider the quadratic term in αq in the effective action which gives rise

to the propagator of the α-”particle” and construct a perturbation theory to include higher-order

terms. This can be formulated as a set of Feynman rules using which one can construct a systematic

1/N -expansion (to all orders in 1/N).

Note that in the generating function (3.102) we have

J(x)〈x|(−∂2 + α/
√
N)−1|y〉J(y) = J(x)〈x|(−∂2 +m2 + αq/

√
N)−1|y〉J(y) (3.116)
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and this describes the propagator of the (original!) n-field and the coupling of a pair of external

fields to αq, which, as we see, is suppressed by 1/
√
N . In order to formulate the 1/N perturbation

theory it is convenient to reintroduce the n-field. In this way one obtains (requires some work)

1

p2 +m2

D(p)

− 1√
N

(3.117)

where the propagator of the α field (→ exercise) has the form

D(p) = − 2

Γ(p)
,

Γ(p) =

∫
d2q

(2π)2

1

[q2 +m2][(p+ q)2 +m2]

=
1

2π

1√
p2(p2 + 4m2)

ln

√
p2 + 4m2 +

√
p2√

p2 + 4m2 −
√
p2

(3.118)

Thus we end up with N massive fields and all couplings respect the O(N) symmetry, there is no

spontaneous symmetry breaking to O(N − 1).

N.B. Note that in there are no vertices with several α-fields coupled together. Lect. 10

4 Quantization of gauge fields

4.1 Quantum-mechanical systems with constraints; an example

The following example belongs to R. Jackiw.

• Consider a three-particle (mechanical) system with Lagrangian

L((A(t), x1(t), x2(t), ẋ1(t), ẋ2(t)) =
1

2
ẋ2

1 +
1

2
ẋ2

2 +A2 + (ẋ1 + ẋ2)A− 1

2
ω2x2

12 ,

x12 = x1 − x2 (4.1)

Euler-Lagrange equations:

d

dt

∂L

∂ẋ1
=

∂L

∂x1
⇒ ẍ1 + Ȧ = −ω2x12

d

dt

∂L

∂ẋ2
=

∂L

∂x2
⇒ ẍ2 + Ȧ = +ω2x12

d

dt

∂L

∂Ȧ
=
∂L

∂A
⇒ 0 = ẋ1 + ẋ2 + 2A (4.2)
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The Lagrangian is invariant under the following trafo:

x1(t) 7→ x1(t) + α(t)

x2(t) 7→ x2(t) + α(t)

A(t) 7→ A(t)− α̇(t) (4.3)

— a toy model for gauge invariance!

This invariance can be used to eliminate A(t) completely imposing a suitable “gauge fixing” con-

dition. Let us choose

α(t) =

∫ t

t0

dt′A(t) (4.4)

Then A(t) = 0 and we get equations of motion

ẍ1 = −ω2x12

ẍ2 = +ω2x12 (4.5)

which, obviously, describes a system of two particles connected by a spring, and, in addition, a

constraint condition (from the third EOM)

ẋ1 + ẋ2 = 0 (4.6)

(the total momentum is zero).

The corresponding Lagrangian formulation: Consider a system with

L(x1, x2, ẋ1, ẋ2) =
1

2
ẋ2

1 +
1

2
ẋ2

2 −
1

2
ω2x2

12 (4.7)

with the constraint

p1(t) + p2(t) = 0 , pk =
∂L

∂ẋk
(canonical momentum) (4.8)

This is an example of what is called “constrained canonical system” and the question is how such

systems can be quantized (Dirac)

• Without the constraint, everything is very simple. We introduce new coordinates

X =
1

2
(x1 + x2) center of mass

x = x1 − x2 (4.9)

so that the Lagrangian becomes

L(X,x; Ẋ, ẋ) = Ẋ2 +
1

4
ẋ2 − 1

2
ω2x2 (4.10)
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and the new canonically conjugated momenta are

P =
∂L

∂Ẋ
= 2Ẋ = p1 + p2

p =
∂L

∂ẋ
=

1

2
ẋ =

1

2
(p1 − p2) (4.11)

Canonical quantization:

x,X 7→ x̂, X̂ , p, P 7→ p̂, P̂ ,

[p̂, x̂] = i , [P̂ , X̂] = i (4.12)

Hamiltonian

Ĥ =
1

2
P̂ 2 + p̂2 +

1

2
ω2x̂2 (4.13)

gives rise to a Schrödinger equation for the wave function, ĤΨ(X,x) = EΨ(X,x) with solutions,

obviously

Ψ(X,x) = eiPxψn(x) , En =
1

2
P 2 +

(
n+

1

2

)
ω (4.14)

where ψn(x) are Hermite polynomials (WFs of the harmonic oscillator)

• The question is, how to impose the classical constraint P = p1 + p2 = 0 in quantum theory?

(1) First thought (wrong):

←− Require that the operator P vanishes P̂
!

= 0

— contradicts commutation relations. . .

(2) Second thought (Dirac):
←− Require that the Hilbert space of the quantum

theory is restricted to a subspace (“physical states”)

with zero momentum:

←− ∀F (x) F (P̂ )|phys〉 = 0

This looks clever, but does not automatically cure all problems. Indeed, let us calculate the

commutator

? 〈phys|[P̂ , X̂]|phys〉 = 0 or = i (4.15)

The WF of a physical state (that is with zero momentum) does not depend on X, it is a function

of x only. Consider ground state as example

Ψphys = Ψvac ∼ e−
1
2
ωx2

12 (4.16)
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Then

. . . =
i

2

∫
dx1dx2 e

− 1
2
ωx2

12

[
∂

∂x1
+

∂

∂x2
, x1 + x2

]
e−

1
2
ωx2

12

=
i

2

∫
dx1dx2 e

− 1
2
ωx2

12

(
∂

∂x1
+

∂

∂x2

)
(x1 + x2)e−

1
2
ωx2

12

= i

∫
dx1dx2 e

− 1
2
ωx2

12e−
1
2
ωx2

12 = ? (4.17)

— the integral diverges along x1 + x2. We will try to formulate a consistent approach using path

integral quantization.

4.2 Path-integral quantization of constrained systems

• Our goal is to calculate

〈phys, f |e−iĤt|phys, i〉 =? (4.18)

For our very simple system we can easily solve the constraint explicitly

P = 0 ⇒ X = const (4.19)

and write the path integral in terms of the remaining coordinate:

. . . =

∫
dxfdxiΨphys,f (xf )Ψphys,i(xi)

x(tf )=xf∫
x(ti)=xi

Dx(t) exp

{
i

∫ tf

ti

dt
(1

4
ẋ2 − 1

2
ω2x2

)}
(4.20)

In the general situation this solution can be complicated and not possible to write explicitly. E.g.

in QED the constraint was ∇ · E = 0, how to solve it for ~A? And it can be more complicated.

• Thus it makes sense to try to write the path integral in terms of the original coordinates∫
Dx1Dx2

• Reminder: path integral in phase space (first for one variable)

We slice the time interval

tf = tN > tN−1 > . . . > t1 > t0 = ti, (4.21)

write the time evolution operator as a product of evolution operators in small slices, and insert

unity operators in between:

〈xf |e−iĤ(tf−ti)|xi〉 = 〈xf |e−iĤ(tN−tN−1)1le−iĤ(tN−1−tN−2)1l . . . 1le−iĤ(t1−t0)|xi〉 (4.22)

where

1lk =

∫
dxk

dpk
2π

eipkxk︸ ︷︷ ︸
〈xk|pk〉

|xk〉〈pk| (4.23)
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Next, we observe that

∀k 〈pk|e−iĤ(p̂,x̂)∆t|xk−1〉 = e−ipkxk−1−iH(pk,xk−1)∆t (4.24)

and collecting everything get

〈xf |e−iĤ(tf−ti)|xi〉 =

∫ ∏
dxk

∏ dpk
2π

exp
{
ipN (xN − xN−1) + . . .+ ip1(x1 − x0)

}
× exp

{
− i∆t

[
H(pN , xN−1) + . . .+H(p1, x0)

]}
=

∫
Dx(t)Dp(t) exp

{
i

∫ tf

ti

dt
[
p(t)ẋ(t)−H(p(t), x(t)

]}

→

x(tf )=xf∫
x(ti)=xi

Dx(t) exp
{
i

∫ tf

ti

dtL(x(t), ẋ(t))
}

(4.25)

• Let us try to do the same for our problem. The only difference is that we have two variables:

〈0, phys|e−iĤ(tf−ti)|0, phys〉 =

=

∫
dxf1dx

f
2 Ψ0(xf1 − x

f
2)

∫
dxi1dx

i
2 Ψ0(xi1 − xi2)〈xf1x

f
2 |e
−iĤ(tf−ti)|xi1xi2〉

=

∫
dxf1dx

f
2 e
− 1

2
ω(xf12)2

∫
dxi1dx

i
2 e
− 1

2
ω(xi12)2

×
∫
Dx1Dx2Dp1Dp2 exp

{
i

∫
dt
[
p1ẋ1 + p2ẋ2 −

1

2
p2

1 −
1

2
p2

2 −
1

2
ω2x2

12

]}
(4.26)

and introducing natural new variables

X =
1

2
(x1 + x2) , x = x1 − x2 , P = p1 + p2 , p =

1

2
(p1 − p2) (4.27)

get

. . . =

∫
dxfdXfe

− 1
2
ωx2

f

∫
dxidXie

− 1
2
ωx2

i

×
∫
DX DxDP Dp exp

{
i

∫
dt
[
PẊ + pẋ− 1

2
P 2 − p2 − 1

2
ω2x2

]}
(4.28)

These are simple integrals, let us try to take them. First do the path integrals over momenta:∫
DP ei

∫
dt[PẊ− 1

2
P 2] = N ei

∫
dt 1

2
Ẋ2

∫
Dp ei

∫
dt[pẋ−p2] = N ei

∫
dt 1

4
ẋ2

(4.29)

Get

. . . =

∫
dxfdXfe

− 1
2
ωx2

f

∫
dxidXie

− 1
2
ωx2

i

×
∫
DX Dx exp

{
i

∫
dt
[1

2
Ẋ2 +

1

4
ẋ2 − 1

2
ω2x2

]}
(4.30)
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The remaining path integral over X(t) corresponds to the free motion and the result of this inte-

gration is a function of the difference between the final and initial “big X” coordinates:

X(tf )=Xf∫
X(ti)=Xi

DX ei
∫
dt 1

2
Ẋ2

= 〈Xf |e−i
1
2
P̂ 2(tf−ti)|Xi〉 =

∫
dP

2π
〈Xf |P 〉e−i

1
2
P 2tfi〈P |Xi〉

=

∫
dP

2π
eiP (Xf−Xi)e−i

1
2
P 2tfi = F (Xf −Xi) , (4.31)

and the remaining factors do not involve any Xf , Xi dependence. Thus if we try to make the

remaining integrations
∫
dXfdXi we will find a divergence along the direction of Xf +Xi. This is

not good §.

• The problem arises because we did not define what is a “physical” state properly. First of all,

it is not enough to say that the system is in a “physical” state at ti and tf , but one has to require

that it does not fluctuate into “unphysical” states at intermediate times. Second, we should be

careful with counting the number of states: Our two-particle system with c.m. coordinate X = 0

and X = 1 are not two different states, but two copies of the same state and we have to take into

account its contribution only once. In order to ensure this, we have to substitute the unity operator

insertions in Eq. (4.22) by projection operators on the physical subspace:

1l =
∑
all

|Ψ〉〈Ψ| =⇒ 1lphys =
∑
phys

|Ψ〉〈Ψ| (4.32)

For our simple case, this amounts to the modification of Eq. (4.23) to

1lphys =

∫
dp1

2π

dp2

2π
(2π)δ(p1 + p2)

∫
dx1dx2 δ

(
1
2(x1 + x2)− a

)
eip1x1+ip2x2 |x1x2〉〈p1p2| (4.33)

or

1lphys =

∫
dp1

2π

dp2

2π
(2π)δ(p1 + p2)

∫
dx1dx2 δ

(
1
2(x1 + x2)− a

)
e−ip1x1−ip2x2 |p1p2〉〈x1x2| (4.34)

(both representations can be useful)

Let us check that 1lphys acts as a unity operator on a physical subspace,

〈y1y2|phys〉 = Ψ(y1 − y2)

We need to show that

〈y1y2|1lphys|phys〉
?
= 〈y1y2|phys〉 (4.35)

so let us calculate:

〈y1y2|1lphys|phys〉 =

= 〈y1y2|
∫
dp1

2π

dp2

2π
(2π)δ(p1 + p2)

∫
dx1dx2 δ

(
1
2(x1 + x2)− a

)
e−ip1x1−ip2x2 |p1p2〉〈x1x2|phys〉

=

∫
dp1

2π

dp2

2π
(2π)δ(p1 + p2)

∫
dx1dx2 δ

(
1
2(x1 + x2)− a

)
e−ip1x1−ip2x2 eip1y1+ip2y2︸ ︷︷ ︸

〈y1y2|p1p2〉

Ψ(x12) (4.36)
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where a is an arbitrary constant.

Integrals over momenta are trivial:∫
dp1

2π

dp2

2π
(2π)δ(p1 + p2)e−ip1x1−ip2x2+ip1y1+ip2y2

=

∫
dp1

2π
eip1(−x1+x2+y1−y2) = δ(x12 − y12) (4.37)

so that we get∫
dx1dx2 δ

(
1
2(x1 + x2)− a

)
δ(x12 − y12)Ψ(x12)

=

∫
d
(

1
2(x1 + x2)

)
d(x12)δ

(
1
2(x1 + x2)− a

)
δ(x12 − y12)Ψ(x12) = Ψ(y12) © (4.38)

• Derivation of the path integral can now be repeated inserting these extra δ-functions. Note (will

be important later) that it is NOT necessary to use the same constant a at all time slices – they

can be different. We get

〈phys, f |e−iĤ(tf−ti)|phys, i〉 =

=

∫
dxf1dx

f
2 Ψf

phys(x
f
12)δ

(
1
2(xf1 + xf2)− af

)∫
dxi1dx

i
2 Ψi

phys(x
i
12)δ

(
1
2(xi1 + xi2)− ai

)
×
∫
Dp1(t)Dp2(t)

∏
t

δ(p1(t) + p2(t))

∫
Dx1(t)Dx2(t)

∏
t

δ
(

1
2(x1(t) + x2(t))− a(t)

)
× exp

{
i

∫
dt
[
p1ẋ1 + p2ẋ2 −

1

2
p2

1 −
1

2
p2

2 −
1

2
ω2x2

12

]}
(4.39)

Starting from this expression we can take the integrals over momenta and over x1 + x2 and will

find

. . . =

∫
dxfdxiΨ

f
phys(xf )Ψi

phys(xi)

∫
Dx(t) exp

{
i

∫
dt
[1

4
ẋ2 − 1

2
ω2x2

]}
(4.40)

which is the same expression as we found above writing path integral in terms of x = x1 − x2

directly. So, it seems we are on the right path!

Lect. 11

• The important point to cancel all divergences and reproduce the correct answer was a simple

identity that allowed us to get rid of integrations over non-dynamical coordinates∏
k

∫
dXk dxkδ(Xk − ak) =

∏
k

dxk xk = x(tk) (4.41)

or ∏
k

∫
dXk δ(Xk − ak) = 1 (4.42)

In order to write this we had to know the expression for Xk in terms of original coordinates:

{x1, x2} 7→ {X,x} , X = X(x1, x2) , x = x(x1, x2) (4.43)
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What can we do if the explicit expressions for new coordinates X(x1, x2), x(x1, x2) are not known?

To make the following equations less cumbersome, let us introduce a shorthand notation for the

set of coordinates at all time slices

X = {X1 . . . , XN} x = {x1 . . . , xN} (4.44)

Note, first of all, that (4.42) can be replaced with the same effect by a more general expression∏
k

∫
dXk δ(fk(X,x)) det

∣∣∣∣dfi(X,x)

dXj

∣∣∣∣ = 1 (4.45)

which is a multidimensional analogue of∫
dX f ′(X)|δ[f(X)] =

∫
d(f(X)) δ[f(X)] = 1 , (4.46)

assuming that functions fk(X1, . . . , XN ;x1, . . . , xN ) have only one solution of fk(X,x) = 0 for X

assuming given set of x.

Now we have to recall some results from theoretical mechanics (in Hamiltonian formulation). Going

over to

{x1, x2} 7→ {X,x} , {p
1
, p

2
} 7→ {P , p} (4.47)

can be viewed as a canonical transformation to new generalized coordinates. An important concept

in this formalism are Poisson brackets. One can show that

dfi(X,x)

dXj
=
{
Pi, fj

}
P,p,X,x

(4.48)

where {
Fi, Gj

}
P,X,p,x

!
=
∑
k

[
∂Fi
∂Pk

∂Gj
∂Xk

+
∂Fi
∂pk

∂Gj
∂xk

]
− (F ↔ G) (4.49)

The most important property: Poisson brackets are invariant under canonical transformations, i.e.{
Fi, Gj

}
P,p,X,x

=
{
Fi, Gj

}
p1,p2,x1,x2

(4.50)

so that we can write (for our case)

dfi(X,x)

dXj
=
{

(p1 + p2)i, f̃j(x1, x2)
}
p1,p2,x1,x2

(4.51)

Here we assume that we know P = p1 + p2 but pretend that we do not know X(x1, x2), x(x1, x2)

Formally

f̃(x1, x2) = f(X(x1, x2), x(x1, x2)) (4.52)

This relation is of no use if we do not know what is X and x but since the function f(X,x) in (4.45)

was (almost) arbitrary, we can use an (almost) arbitrary function of original coordinates f̃(x1, x2)
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instead!

• The rest is a technicality, we have to take a continuum limit and replace the sets of coordinates

and momenta at given time slices by functions of time. Thus

fk(x1, x2) 7→ f [x1(t), x2(t)]{
(p1 + p2)i, f̃j(x1, x2)

}
7→
{
p1(t) + p2(t), f [x1(t′), x2(t′)]

}
(4.53)

with {
F (t), G(t′)

}
!

=

∫
dt′′
(

δF

δp1(t′′)

δG

δx1(t′′)
+

δF

δp2(t′′)

δG

δx2(t′′)
− (F ↔ G)

)
(4.54)

And this is the end, we can write a more general path-integral representation of Green functions

for our system

〈phys, f |e−iĤ(tf−ti)|phys, i〉 =

=

∫
dxf1dx

f
2 Ψf

phys(x
f
12)δ

(
f [xf1 , x

f
2 ]
)∫

dxi1dx
i
2 Ψi

phys(x
i
12)δ

(
f [xi1, x

i
2]
)

×
∫
Dp1(t)Dp2(t)

∏
t

δ(p1(t) + p2(t))

×
∫
Dx1(t)Dx2(t) det

{
p1(t) + p2(t), f [x1(t), x2(t)]

} ∏
t

δ
(
f [x1(t), x2(t)]

)
× exp

{
i

∫
dt
[
p1ẋ1 + p2ẋ2 −H(x1, x2, p1, p2)

]}
(4.55)

δ(p1 + p2) ↔ constraint

δ(f(x1, x2)) ↔ gauge fixing (4.56)

• Our goal is of course to develop a technique that can be applied to more complicated systems

so let us see how it works for QED. Compare:

QM example QED in Coulomb gauge

auxiliary fields x1(t), x2(t),��
�A(t) Aµ(t) = {�Φ, ~A}

canon. coord. x1(t), x2(t) Ak(~x, t) , k = 1, 2, 3

canon. momenta p1(t), p2(t) Ek(~x, t) , k = 1, 2, 3

constraint p1(t) + p2(t) = 0 ~∇ · ~E = 0

gauge fix. x1 + x2 − a− 0 ~∇ · ~A = 0

Poisson brack. 1 ?
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Let us calculate the Poisson bracket in QED.{ ∂

∂xk
Ek(x),

∂

∂yl
Al(y)

}
= ∂kx =

∂

∂xk

=

∫
d4z

{
δ∂kxE

k(x)

δEi(z)

δ∂lyA
l(y)

δAi(z)
−
��

�
��δ∂kxE
k(x)

δAi(z)
�
�
�
��δ∂lyA
l(y)

δEi(z)

}
=

∫
d4z ∂kxδ

(4)(x− z)δki ∂lyδ(4)(y − z)δli (4.57)

Use ∫
d4z δ(4)(x− z)δ(4)(y − z) = δ(4)(x− y) (4.58)

. . . = ∂kx∂
k
y δ

(4)(x− y) = ~∇2δ(4)(x− y) (4.59)

(Laplace operator applied to the delta-function). We will need a determinant of this operator which

can also be written as

det ~∇2δ(4)(x− y) = eTr ln ~∇2δ(4)(x−y) (4.60)

Now all ingredients are in place and we can write the QED path integral (I skip averaging over the

states)∫
DAk(x)

∏
x

δ(~∇ · ~A)

∫
DEk

∏
x

δ(~∇ · ~E) det ~∇2δ(4)(x− y) ei
∫
d4x [ ~E· ~̇A−H(E,A)] (4.61)

This is so far a path integral in phase space. We can now rewrite∏
x

δ(~∇ · ~E) =

∫
DA0(x) ei

∫
d4xA0(x)~∇· ~E(x) (4.62)

after which the integral over the electric fields (= generalized momenta) can be done and the result

can be written as

. . . =

∫
DAk(x)DA0(x)︸ ︷︷ ︸

DAµ(x)

∏
x

δ(~∇ · ~A) det ~∇2δ(4)(x− y)︸ ︷︷ ︸
constant!

exp
{
− i
∫
d4x

1

4
FµνF

µν
}

(4.63)

Finally, the determinant can be thrown out as it is a constant that will cancel in the ratio of path

integrals for Green functions (this simplification is specific for QED).

4.3 Faddeev-Popov method, QED in covariant gauges

In 1967 Faddeev and Popov suggested a very elegant formalism to quantize constrained systems

with main focus on nonabelian gauge theories. Let us introduce this technique first for QED.

• Leaving aside the question with boundary conditions (which role is mainly to derive the +iε
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prescription in Feynman propagator), one can try to write the QED path integral in the “naive”

version as ∫
DAeiS[A] DA ≡ DADA0DA1 . . .DA3 (4.64)

The action is

S =

∫
d4x

[
−1

4
F 2
µν

]
Fµν = ∂µAν − ∂νAµ

=
1

2

∫
d4xAµ(x)

[
∂2gµν − ∂µ∂ν

]
Aν(x) (4.65)

Going over to momentum space this can be written as

Aµ(x) =

∫
d4k

(2π)4
e−ikxAµ(k)

S =
1

2

∫
d4k

(2π)4
Aµ(k)

[
− k2gµν + kµkν

]
Aν(k) (4.66)

To formulate the perturbation theory we need to find the propagator which is defined as a Green

function (with proper boundary conditions)[
∂2gµν − ∂µ∂ν

]
Dνρ(x− y) = iδρµδ

(4)(x− y) g ρ
µ ≡ δρµ (4.67)

which becomes a (matrix) algebraic equation in momentum space:[
− k2gµν + kµkν

]
Dνρ(k) = iδρµ (4.68)

This equation, however, does not have any solutions. Indeed, because of Lorentz invariance Dνρ

must have the structure

Dνρ(k) = d1g
νρ + d2k

νkρ (4.69)

so that [
− k2gµν + kµkν

]
Dνρ(k) =

[
− k2gµν + kµkν

][
d1g

νρ + d2k
νkρ
]

= −d1g
µρk2 + kµkρ[��

��−d2k
2 + d1 −���d2k

2] (4.70)

Thus we are forced to put d1 = 0 to kill the kµkρ term and cannot get the iδρµ required on the r.h.s.

In other words, an inverse operator does not exist. . . ...

The problem, of course, has its roots in gauge invariance. The action does not change under gauge

transformations

Aµ(x) 7→ Aµ(x) +
1

e
∂µα(x) ≡ Aαµ(x) ← notation (4.71)

and this reflects that fact that physical — electric and magnetic — fields do not change under

such trafo. As the result the operator ∂2gµν − ∂µ∂ν has zero modes — eigenfunctions with zero
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eigenvalues, and the inverse does not exist. Each physical state has to contribute once to the path

integral and writing path integral over all four components in Aµ we overcount - each state comes

many times. [We have seen this on the QM example in the previous section].

• To reduce the number of states we can try to impose some gauge condition. For example

G(A) = 0 where G is some functional (4.72)

The (first) idea by Faddeev and Popov was to insert a unity factor inside the path integral, of the

type

1 =

∫ ∞
−∞

dx δ(f(x))

∣∣∣∣ dfdx
∣∣∣∣ (4.73)

which can be generalized to (we used this several times already)

1 =

∫
Dα(x)δ

[
G(Aα)

]
det

(
δG(Aα)

∂α

)
(4.74)

Here

δ
[
G(Aα)

]
≡
∏
x

δ
[
G(Aα)

]
(4.75)

and (cf. above)

Aαµ(x) ≡ Aµ(x) +
1

e
∂µα(x) (4.76)

Let us take a generalized Lorentz-type gauge condition as example (most important practically):

G(A) = ∂µA
µ − ω(x)︸︷︷︸

arbitrary function

(4.77)

Then

det

(
δG(Aα)

∂α

)
= det

[
δ

δα(x)

(
∂µA

µ(y) +
1

e
∂2α(y)− ω(y)

)]
= det

[
∂2δ(4)(x− y)

]
(4.78)

Note that this is the same determinant as in previous section. Since it does not depend on Aµ we

can pull it out of the path integral to get∫
DA · 1 · eiS[A] = det

[
∂2δ(4)(x− y)

] ∫
Dα

∫
DAeiS[A]δ

[
G(Aα)

]
(4.79)

However, ∫
DA =

∫
DAα shift of variable

S[A] = S[Aα] gauge invariance (4.80)
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Thus

. . . = det
[
∂2δ(4)(x− y)

] ∫
Dα

∫
DAα eiS[Aα]δ

[
G(Aα)

]
= det

[
∂2δ(4)(x− y)

] ∫
Dα︸ ︷︷ ︸

irrelevant constant

∫
DAeiS[A]δ

[
G(A)

]
(4.81)

• We still have a freedom to choose ω(x) in the gauge condition, and this can be used to bring

δ
[
G(A)

]
to smth more manageable. To this end we do not choose a particular function, but

integrate over all ω(x) with the Gaussian weight factor:∫
Dω(x) e

−i
∫
d4x

ω2(x)
2ξ . . . . . . δ

[
∂µA

µ − ω
]

= exp

(
−i
∫
d4x

(∂µA
µ)2

2ξ

)
(4.82)

This integral is taken trivially using the gauge-fixing delta-function and results in an extra term in

the Lagrangian density

L(ξ) = −1

4
F 2
µν −

1

2ξ
(∂µA

µ)2 (4.83)

(name: gauge-fixed Lagrangian)

We can now calculate all Green functions involving gauge-invariant operators O(Aα) = O(A):

〈Ω|T {O1(A) . . . On(A)}|Ω〉 =

∫
DAO1(A) . . . On(A) eiS

(ξ)[A]∫
DAeiS(ξ)[A]

(4.84)

The Faddeev-Popov determinant det
[
∂2δ(4)(x− y)

]
and the volume of the gauge group

∫
Dα(x)

cancel out in the ratio!

• Back to the propagator. With the additional term in the action, the equation (4.85) also gets

an additional contribution. We get[
− k2gµν +

(
1− 1

ξ

)
kµkν

]
Dνρ(k) = iδρµ (4.85)

which is solved by

Dµν(k) =
−1

k2 + iε

(
gµν − (1− ξ)k

µkν

k2

)
(4.86)

The gauge parameter ξ can be chosen arbitrary. The most common choices are

ξ = 0 Landau gauge

ξ = 1 Feynman gauge

ξ = 3 Yennie gauge (4.87)

Lect. 12
• We expect that all physical results, e.g. the probability to emit a photon in a certain reaction,

do not depend on the choice of gauge parameter. How can this happen?
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To describe photon emission we can consider a generating functional adding external source to the

action:

S[J ] =

∫
d4x

[
− 1

4
F 2
µν(x)−Aµ(x)Jµ(x)

]
(4.88)

The corresponding Euler-Lagrange equation = Maxwell equation

∂µF
µν = Jν (4.89)

so that the viervector Jν = {ρ,~j} is composed from the charge/current density of external particles

(e.g. electrons).

Probability amplitude to emit a photon will then be given by the matrix element of the current

sandwiched between the initial and final state:

k; e iM(k) = iMµ(k)ε∗µ(k)

Mµ(k) =

∫
d4x eikx〈f |Ĵµ(x)|i〉 (4.90)

[We need to write operator Ĵµ(x) in real QED where electrons are also quantum particles, but

for the present argument we can also take a function J(x) assuming that photons are produced by

some classical source.]

Remember that the current Jµ in classical QED is conserved:

∂µJ
µ = 0 ⇔ d

dt
ρ+ ~∇ ·~j = 0 (4.91)

and therefore

0 = i

∫
d4x eikx〈f |∂µJµ(x)|i〉 p.I=

∫
d4x 〈f |Jµ(x)|i〉

(
−i ∂

∂xµ

)
eikx = kµM

µ(k) (4.92)

which is called a Ward identity. For classical sources, it is therefore a direct consequence of current

conservation. In quantum theory (QED) we have to make sure that charged current is conserved

as an operator — this deserves a detailed discussion (later).

The ε∗µ(k) in above equation is photon polarization vector (complex conjugated because photon in

final state). Let us recall how are the polarization vectors defined. The four-vector potential of a

real photon, k2 = 0, can be written as

A(λ)
µ (x) =

∫
d3k

(2π)32k0

[
ε(λ)
µ e−ikx + ε∗(λ)

µ eikx
]
, k0 = |~k| (4.93)

Let us choose a frame of reference where

kµ = {k, 0, 0, k} (4.94)

In this frame we can define four orthogonal vectors

ε(1)
µ = {0, 1, 0, 0} ε(2)

µ = {0, 0, 1, 0}

ε(+)
µ =

1√
2
{1, 0, 0, 1} ε(−)

µ =
1√
2
{1, 0, 0,−1} (4.95)
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as a basis. Only first two possibilities (transverse polarizations) are physical because the other two

can be disposed of by the choice of gauge:

• Lorentz gauge

∂µAµ(x) = 0 =⇒ kµAµ(k) = 0

=⇒ Aµ(k) = e(−)
µ A−(k) not allowed [kµe(−)

µ = 2] (4.96)

• For the special case k2 = 0 Lorentz condition does not specify the gauge uniquely

0 = kµAµ(k) = kµA′µ(k) = kµ(Aµ + kµλ(k))

=⇒ Aµ(k) = e(+)
µ A+(k) ∼ kµ can be gauged away (4.97)

Thus, emission of “plus” or “minus” photons cannot influence any observable quantities.

Imagine we want to calculate the total probability of photon emission:

σ ∼
∑
phys.
polar.

|M |2 =
∑
phys.
polar.

ε(λ),∗
µ ε(λ)

ν MµMν,∗ = |M1|2 + |M2|2 (4.98)

However

kµM
µ = 0 =⇒ k0M

0 − k3M
3 = 0 =⇒ M0 = M3 (4.99)

Therefore can write also∑
phys.
polar.

ε(λ),∗
µ ε(λ)

ν MµMν,∗ = |M1|2 + |M2|2 = |M1|2 + |M2|2 + |M3|2 − |M0|2

= −gµνMµMν,∗ =
∑
all

polar.

ε(λ),∗
µ ε(λ)

ν MµMν,∗ (4.100)

i.e. the sum over transverse polarizations is equal to the sum over all polarizations.

On a more technical level, this means that QED interaction vertices have such a form that they

effectively annihilate the longitudinal ξ-dependent parts of the propagators in Feynman diagrams

(this happens in the sum of all diagrams with photon emission in all points along a given fermion

line, not in each diagram separately).

Another formulation — interaction is such that unphysical degrees of freedom can not be produced

in collisions of physical particles — the QED scattering matrix (S-matrix) is unitary.

5 Path Integrals for fermions

Path-integral technique allows to build (define) a quantum field theory starting from classical fields.

We did it for scalar fields and photons, and now want to do it for fermions.

Electric/magnetic fields (class.)
Path.I.−→ Photons (quantum)

(?) Classical Dirac Field
Path.I.−→ Electrons (quantum) (5.1)
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The problem is, we do not know what is a classical Dirac field — and note that Dirac spinors

(solutions of Dirac equations) are not directly observable.

The problem is to incorporate the anti-commutation relation for classical fields that are functions,

not operators:

{Ψ(~x, t),Ψ(~y, t) = 0 (5.2)

and the idea is to write this functions, schematically, as

Ψ(x) =
∑
k

θkφi(x) (5.3)

where φk(x) form a complete set of “normal” functions, and θk are new mathematical objects,

anticommuting numbers (= Grassman numbers).

• We define Grassman numbers as the set of anticommuting numbers

∀ θ, η θ η = −η θ (5.4)

As a consequence

∀ θ, θ2 = 0 (5.5)

We assume that Grassman numbers can be added and also multiplied by complex numbers produc-

ing objects like Aθ + Bη, A,B ∈ C, and these operations obeys all natural rules (commutativity,

transitivity etc.).

Next, we need to define integrals over Grassman numbers. Note that for path integrals (our goal)

we only need analogue of
∫∞
−∞: ∫

dθ f(θ) =? (5.6)

The nice thing is, all functions of Grassman numbers are linear functions (as θ2 = 0, so each f(η)

can be written as

f(θ) = A+B θ (5.7)

Working with path integrals we have seen that the invariance w.r.t. the change the variable by a

given function Dφ(x) = D(φ(x) + φ0(x) is very important and we want to have the same property

(translation invariance) for fermions. We therefore require that∫
dθ f(θ) ≡

∫
d(θ + η) f(θ + η)

!
=

∫
dθ f(θ + η) (5.8)

and of course we want to define integration as a linear operation, i.e.∫
dθ [Af(θ) +Bg(θ)] = A

∫
dθ f(θ) +B

∫
dθ g(θ) , A,B ∈ C
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Using that f(η) is actually a linear function, (5.8) becomes

∀η,A,B
∫
dθ [A+B θ]

!
=

∫
dθ [A+B (θ + η)]

=

∫
dθ [(A+B η) +Bθ] =

∫
dθ [(A+B η) +B

∫
dθ θ (5.9)

and the only possibility how it can be satisfied is to require∫
dθ = 0 ,∫

dθ θ = 1 , (arbitrary constant, can be set to one) (5.10)

In order to deal with multiple integrals we have to add a definition (sign convention)∫
dθ

∫
dη ηθ ≡

∫
dθ

(∫
dηη

)
θ = 1 (5.11)

(so that, effectively dθη = −ηdθ, etc.).

Last but not least, we need “complex-valued” Grassman numbers, so we introduce an operation of

complex conjugation θ 7→ θ∗ such that (θ∗)∗ = θ and

(θ η)∗
!

= η∗θ∗ = −θ∗η∗ (5.12)

Note that θ2 = (θ∗)2 = 0 but θθ∗ = −θ∗θ /= 0.

For the integrals over complex Grassman numbers we assume as above∫
dθ∗dθ θ θ∗ = 1 (5.13)

As a consequence ∫
dθ∗dθ e−θ

∗bθ =

∫
dθ∗dθ (1− θ∗bθ) = b (5.14)

to be compared with a similar integral over “normal” complex variables (Gauss)∫
dz∗dz e−z

∗bz =
2π

b
(5.15)

Note that b appears in the numerator in the first case, and in the denominator in the second. This

will be important!

Next in complexity, we will need integrals of this type but with constant b replaced by a matrix

(or differential operator). To derive these, we need to understand what happens with products of

Grassman numbers under unitary transformations.

Assume we have a set of Grassman numbers

θi, i = 1, . . . , n (5.16)
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and “rotate” them with a unitary matrix

θ′i = Uijθj U †U = 1l (5.17)

Then ∏
i

θ′i =
1

n!
εij...`θ′iθ

′
j . . . θ

′
`

=
1

n!
εij...`Uii′θi′Ujj′θj′ . . . U``′θ`′

=
1

n!
εij...`Uii′Ujj′ . . . U``′ε

i′j′...`′
∏
k

θk

= det U
∏
i

θi (5.18)

As a consequence ∫ ∏
i

dθ∗i dθi f(θ, θ∗)︸ ︷︷ ︸∏
θi

∏
θ∗i

=

∫ ∏
i

θ∗i θi f(θ′, θ′∗) (5.19)

because detU · (detU)∗ = 1.

We can use the possibility to make such rotations to bring hermitian matrices to the diagonal form

so that ∫ ∏
k

dθ∗kdθk e
−

∑
ij θ
∗
iBijθj =

∫ ∏
k

dθ∗kdθk e
−

∑
i θ
∗
i biθi =

∏
i

bi = det B (5.20)

For comparison, for “normal” integrals∫ ∏
k

dz∗kdzk e
−z∗i Bijzi =

(2π)n

detB
(5.21)

Finally, two more integrals that can be derived starting from the above:∫ ∏
k

dθ∗kdθk e
θ∗iBijθjθ`θ

∗
m = detB (B−1)`m ,

∫ ∏
k

dz∗kdzk e
−z∗i Bijziz`z

∗
m =

(2π)n

detB
(B−1)`m (5.22)

The difference is always in the position of the determinant — numerator vs. denominator!

• Now that the necessary mathematical tools are ready, we can define the classical Dirac field

ψ(x) =
∑
i

θi φi(x) (5.23)
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where φi(x) are four-component objects (bispinors). We will then write the fermion action as

SF =

∫
d4x ψ̄(x)(i/∂ −m)ψ(x) (5.24)

To see that it produces expected results we can calculate the propagator using above integrals

(5.20), (5.22):

〈0|T{ψ̂(x1)̂̄ψ(x2)}|0〉 =

∫
Dψ̄Dψ ψ(x1)ψ̄(x2) eiSF∫

Dψ̄Dψ eiSF

=
det(i/∂ −m)〈x1| i

i/∂−m |x2〉
det(i/∂ −m)

(5.25)

Thus

SF (x− y) ≡ 〈0|T{ψ̂(x1)̂̄ψ(x2)}|0〉 =

∫
d4k

(2π)4
〈x1|k〉

i

/k −m+ iε
〈k|x2〉

=

∫
d4k

(2π)4i
e−ik(x1−x2) 1

m− /k − iε

=

∫
d4k

(2π)4i
e−ik(x1−x2) m+ /k

m2 − k2 − iε
(5.26)

reproducing the well-known expression. Note that for fermion field operators

T{ψ̂(x1)̂̄ψ(x2)} = θ(t1 − t2) ψ̂(x1)̂̄ψ(x2)− θ(t2 − t1)̂̄ψ(x2)ψ̂(x1) (5.27)

Lect. 13
In order to calculate Green functions with more than two fields we can construct the generating

functional

Z[η̄, η] =

∫
Dψ̄Dψ exp

{
i

∫
d4x

[
ψ̄(x)(i/∂ −m)ψ(x) + η̄(x)ψ(x) + ψ̄(x)η(x)

]}
= Z0 exp

{
−1

2

∫
d4x d4y η̄(x)SF (x− y)η(y)

}
(5.28)

We need one more sign convention to take derivatives over Grassmanian numbers:

d

dη
θη = − d

dη
ηθ

!
= −θ (5.29)

Then

〈0|T{ψ̂(x1)̂̄ψ(x2)}|0〉 = Z−1
0

(
−i δ

δη̄(x1)

)(
+i

δ

δη(x2)

)
Z[η̄, η]

∣∣∣
η=η̄=0

(5.30)

etc.

• Everything is now ready to define Quantum Electrodynamics starting from the path integral

with

LQED = −1

4
F 2
µν + ψ̄(x)(i/∂ −m)ψ(x) + eψ̄γµψAµ (5.31)
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Equations of motion (Maxwell+Dirac)

(i /D −m)ψ = 0 , ψ̄(i
←
/D +m) = 0

∂µF
µν = Jν , Jν = −eψ̄(x)γµψ(x) (5.32)

Covariant derivative:

Dµ = ∂µ − ieAµ(x) (5.33)

Weil, 1929:

The QED Lagrangian does not change if in addition to the gauge trafo

Aµ(x)→ Aµ(x) +
1

e
∂µα(x) (5.34)

one rotates the fermion field as

ψ(x)→ eiα(x)ψ(x) (5.35)

— local gauge symmetry.

Noether theorem: Symmetry → conserved current/conserved charge

∂νJ
ν = 0 on the classsical level (5.36)

Check:

i∂µψ̄(x)γµψ(x) = ψ̄(x)[i
←
/∂ + i

→
/∂ ]ψ(x)

= ψ̄(x)[(i
←
/∂ −e /A+m) + (i

→
/∂ +e /A−m)]ψ(x) = 0 (5.37)

What happens in quantum theory?

6 Ward identities and quantum anomalies

6.1 Derivation

There exists a simple way to show that current conservation in QED is a direct consequence of

local gauge symmetry.

• Let us make an infinitesimal gauge trafo (phase rotation) of the fermion field α(x)→ 0

ψ(x) 7→ ψ′(x) = (1 + iα(x))ψ(x) , ψ̄(x) 7→ ψ̄′(x) = (1− iα(x))ψ̄(x) , (6.1)

but do not change the gauge (photon) field. In this case, of course, the Lagrangian density will not

be invariant and will change to

L(x) 7→ L′(x) = L − ψ̄γµψ(x)∂µα(x)

= L+
1

e
Jµ(x)∂µα(x) (6.2)
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Consider the QED path integral∫
Dψ̄DψDAeiS[ψ̄,ψ,A] ψ(x1)ψ̄(x2) =

∫
Dψ̄′Dψ′DAeiS[ψ̄′,ψ′,A] ψ′(x1)ψ̄′(x2) (6.3)

Equality holds because this can be viewed as a name change for the integration variables.

However

Dψ̄′Dψ′ = Dψ̄Dψ (6.4)

and therefore ∀α(x)

0 =

∫
Dψ̄DψDAeiS[ψ̄,ψ,A]

{
i

∫
d4x

1

e
Jµ(x)∂µα(x)︸ ︷︷ ︸
S′−S

+iα(x1)− iα(x2)

}
ψ(x1)ψ̄(x2) (6.5)

Integrating by parts in the first term in braces and writing, e.g., α(x1) =
∫
d4xα(x) δ(x − x1) we

obtain

〈Ω|T{∂µĴµ(x)ψ̂(x1 )̂̄ψ(x2)}|Ω〉 = eδ(x− x1)〈Ω|T{ψ̂(x1 )̂̄ψ(x2)}|Ω〉

− eδ(x− x2)〈Ω|T{ψ̂(x1 )̂̄ψ(x2)}|Ω〉 (6.6)

which implies that for every matrix element

〈1|∂µĴµ(x)|2〉 = 0 (6.7)

This is the statement of current conservation in quantum theory (where from the usual Ward

identities follow, as we have seen). As a consequence we have two exact predictions: 1) electric

charge is conserved and 2) photon is massless. Both are checked experimentally to a very high

accuracy.

• The argumentation seems to be very general and can be applied to any symmetry of the classical

Lagrangian. Remember that relativistic fermion fields are four-component objects

ψ(x) =


ψ1

ψ2

ψ3

ψ4

 (6.8)

and one can consider rotations between these components. A chiral rotation is defined as

ψ(x) 7→ ψ′(x) = eiαγ5ψ(x) = [1 + iαγ5 + . . .]ψ(x)

ψ̄(x) 7→ ψ̄′(x) = ψ̄(x)eiαγ5 = ψ̄(x)[1 + iαγ5 + . . .] (6.9)

where the second line follows from

ψ̄(x) = ψ†γ0 ⇒ ψ̄′ = (eiαγ5ψ)†γ0 = ψ† (eiαγ5)†︸ ︷︷ ︸
e−iαγ5

γ0 = ψ̄eiαγ5 (6.10)
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If α does not depend on x (global symmetry transformation) and electron mass can be neglected,

m = 0, the Lagrangian density becomes invariant under such transformations:

ψ̄ /Dψ 7→ ψ̄[1 + iαγ5]Dµγ
µ[1 + iαγ5]ψ = ψ̄ /Dψ (6.11)

thanks to

γµγ5 = −γ5γµ , γ5 = iγ0γ1γ2γ3 (6.12)

— Chiral Symmetry

Symmetry of the Lagrangian implies existence of a conserved current (Noether) and this current

can be constructed explicitly (following Noether). One obtains the

—Axial Current

Jµ5(x) = ψ̄(x)γµγ5ψ

∂µJ
µ5 = 0 classically (6.13)

• In order to find out whether axial current is conserved in quantum theory, we can follow the

above argumentation:

Let us consider a local chiral rotation instead of the global rotation

α 7→ α(x) (6.14)

The action will certainly not remain invariant but change by a term ∼ ∂µα(x)

ψ̄ /Dψ 7→ ψ̄ /Dψ − ∂µα(x)Jµ5(x) (6.15)

(similar to what was before). We then proceed in the same way and need to prove that for chiral

trafos also

Dψ̄′Dψ′ ?
= Dψ̄Dψ (6.16)

This can be argued in the following way. A Dirac spinor can be decomposed in left-handed and

right-handed components as

ψ(x) =
1

2
(1− γ5)ψ(x) +

1

2
(1 + γ5)ψ(x) ≡ ψL(x) + ψR(x) (6.17)

The operations

PL
!

=
1

2
(1− γ5) , PR

!
=

1

2
(1 + γ5) (6.18)

are indeed projection operators since

PL + PR = 1l , P 2
L = PL , P 2

R = PR , PLPR = PRPL = 0 (6.19)

The action can also be written as a sum of two terms involving either left or right fermions,

ψ̄ /Dψ = ψ̄L /DψL + ψ̄R /DψR (6.20)
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so that left-handed and right-handed fields become essentially independent (if m = 0!). Also in the

path integral the measure splits in ∫
Dψ =

∫
DψRDψL (6.21)

In Weil representation for gamma-matrices γ5 is diagonal

γ5 =


−1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 +1

 (6.22)

and our projection simply selects two upper components of the Dirac spinor as left-handed, and the

two lower ones as right-handed. The difference between gauge trafo eiα(x) and chiral trafo eiα(x)γ5

is that gauge trafo rotates ψL and ψR in the same direction, ψL,R 7→ eiα(x)ψL,R, whereas chiral

trafo rotates ψL and ψR in opposite directions, ψL 7→ e−iα(x)ψL, ψR 7→ e+iα(x)ψR. Since the path

integral is taken over equal amount of left-handed and right-handed fields, the extra phases will

cancel and the measure will be invariant. Thus (6.16) should hold and repeating the argumentation

that we used for gauge trafo, we will conclude that axial current is conserved at quantum level as

well.

Unfortunately, this conclusion is wrong (experimental fact). Thus there must have been a loophole

in our argumentation, and it turns out (K. Fujikawa, 1979) that (6.16) is actually not true because

of the necessity to introduce a regularization. You can find this e.g. in the textbook by Peskin and

Schröder, but I will describe instead another method where the problem is seen more clearly.

6.2 Adler-Bardeen anomaly

• Let us try to derive the Ward identity (6.6) in a different way, following the technique in Sec. 3.1.

We want to calculate ∫
Dψ̄DψDAeiSQED ∂µJµ(x)ψ(x1)ψ̄(x2) =? (6.23)

where Jµ = −eψ̄γµψ is the electromagnetic current. Write

∂µψ̄(x)γµψ(x) = ψ̄(x)
[ ←
/∂ +

→
/∂
]
ψ(x)

= ψ̄(x)
[( ←

/∂ +ie /A(x)− im
)

+
( →
/∂ −ie /A(x) + im

)]
ψ(x)

= ψ̄(x)
[( ←

/D −im
)

+
( →
/D +im

]
ψ(x)

= −iψ̄(x)
[(
i
←
/D +m

)
+
(
i
→
/D −m

)]
ψ(x) (6.24)

and observe that

δ

δψ̄(y)
ei

∫
d4x ψ̄(x)(i /D−m)ψ(x) = +i(i

→
/D −m)ψ(y) eiSF

δ

δψ(y)
ei

∫
d4x ψ̄(x)(i /D−m)ψ(x) = +iψ̄(y)(i

←
/D +m) eiSF (6.25)
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[taking the derivative, do not forget that fermion operators anticommute — sign in second eq.]

Therefore

∂µJ
µ(x)eiSF = (−e)(−i)ψ̄(x)

[(
i
←
/D +m

)
+
(
i
→
/D −m

)]
ψ(x) eiSF

= (+e)

[(
δ

δψ(x)
eiSF

)
ψ(x) + ψ̄(x)

(
δ

δψ̄(x)
eiSF

)]
(6.26)

and our object of interest can be written as∫
Dψ̄DψDAeiSQED ∂µJµ(x)ψ(x1)ψ̄(x2) =

= e

∫
Dψ̄DψDA

[(
δ

δψ(x)
eiSF

)
ψ(x) + ψ̄(x)

(
δ

δψ̄(x)
eiSF

)]
ψ(x1)ψ̄(x2) (6.27)

Here we want to integrate by parts and have two possibilities. E.g. for the first term

ψ(x1)ψ̄(x2)

(
δ

δψ(x)
eiSF

)
ψ(x)

p.I−→ − eiSF δ

δψ(x)

[
ψ(x1)ψ̄(x2)ψ(x)

]
= −eiSF

[
δ(x− x1)ψ̄(x2)ψ(x) + δ(x− x)︸ ︷︷ ︸

!?

ψ(x1)ψ̄(x2)
]

(6.28)

The term ∼ δ(x− x1) and the similar term ∼ δ(x− x2) from . . . δ
δψ̄(x)

. . . combine to give

. . . = −eδ(x− x1)

∫
Dψ̄DψDAeiSψ̄(x2)ψ(x)

− eδ(x− x2)

∫
Dψ̄DψDAeiSψ(x1)ψ̄(x) (6.29)

which is exactly what we have obtained in Sec. 6.1 by a different method. But in addition we have

two unpleasant terms with δ(4)(0) that signal that we have a potential problem and must be more

accurate.

• It is clear that the problem originates from having the fields ψ̄ and ψ in the electromagnetic

current at the same space-time point. If we separate them a bit,

ψ̄(x)γµψ(x)→ ψ̄(x+ ε)γµψ(x− ε) ,

the “bad” terms would not appear. The limit ε→ (here ε = εν is a four-vector) can, however, turn

out to be singular and require some care:

〈A|ψ̄(x)Mψ(x)|B〉 = lim
εα→0
〈A|ψ̄(x+ ε)Mψ(x− ε)|B〉

=

∫
d4p

(2π)4
〈A|ψ̄(0)M |p〉 e−i2p·ε〈p|ψ(0)|B〉 (6.30)

The limit ε→ 0 may lead to a divergent integral if the matrix elements do not decrease sufficiently

fast with momentum.
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Splitting the field positions in local currents is, of course, a way to introduce a regularization. Lect. 14

But this is a bad regularization because it breaks Lorentz symmetry and gauge invariance. If the

regularization procedure in a quantum theory breaks symmetries of the corresponding classical

theory, these symmetries will not be preserved and the classical conservation laws will be broken.

Of course, was can simply be stupid to use a bad scheme, so the question is whether a regularization

scheme that maintains the wanted symmetry exists. [And a more complicated question: whether

a regularization scheme that maintains all classical symmetries].

In our case:

• We certainly do not want to sacrifice Lorentz symmetry, but can repair it relatively easily if

we average over all directions of εν in Minkowski space (we will see how this works)

• We do not want to sacrifice gauge symmetry, because it protects conservation of the electric

charge = law of nature. It is broken by the “naive” split-point regularization because

ψ̄(x)γµ(γ5)ψ(x) 7→ ψ̄(x+ ε)γµ(γ5)ψ(x− ε)
↓ ↘

ψ̄(x+ ε)e−iα(x+ε) eiα(x−ε)ψ(x− ε) (6.31)

Here γµ(γ5) means that the equation is valid both for γµ and γµγ5.

The gauge-invariant split-point regularization is possible and first suggested by Schwinger:

J reg
µ(5)(x) = ψ̄(x+ ε)γµ(γ5) exp

{
ie

∫ 1

−1
du εµA

µ(x+ uε)
}
ψ(x− ε) (6.32)

Let us verify gauge invariance of this expression.

I
Under a gauge trafo

J reg
µ5 (x) 7→ ψ̄(x+ ε)e−iα(x+ε)γµγ5 exp

{
ie

∫ 1

−1
du εµ(Aµ +

1

e
∂µα)(x+ uε)

}
eiα(x−ε)ψ(x− ε) (6.33)

We have to verify that all α-dependent terms in the exponent cancel:

−iα(x+ ε) + iα(x− ε) + i

∫ 1

−1
du εµ∂

µα(x+ uε)
?
= 0 (6.34)

Useful identity:

∀f(x) xµ
∂

∂xµ
f(ux) = u

d

du
f(ux) (6.35)

Then ∫ 1

−1
du εµ

∂

∂xµ
α(x+ uε) =

∫ 1

−1
du εµ

∂

∂(uεµ)
α(x+ uε)

=

∫ 1

−1
du

1

u
u
d

du
α(x+ uε) = α(x+ ε)− α(x− ε) (6.36)
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and indeed cancel the first two terms in (6.34).

J

• Let us continue with axial vector current (we will also see why there is no problem with vector).

We need finite εν as a regulator, so can assume it is small and expand where possible. Consider

∂µJ
reg
µ5 (x) = ψ̄(x+ ε)

[ ←
/∂ +

→
/∂
]
γ5

(
1 + ie

∫ 1

−1
du ενA

ν(x+ uε) + . . .

)
ψ(x− ε)

= ψ̄(x+ ε)

[( ←
/∂ +ie /A(x+ ε)

)
γ5 − ie /A(x+ ε)γ5

+ γµγ5
∂

∂xµ
ie

∫ 1

−1
du ενA

ν(x+ uε)

+
( →
/∂ −ie /A(x− ε)

)
γ5 + ie /A(x− ε)γ5

]
ψ(x− ε) (6.37)

Let us rewrite the term with the integral in another form:

ie
∂

∂xµ

∫ 1

−1
du ενA

ν(x+ uε) = ie

∫ 1

−1
du εν

{[
∂µAν − ∂νAµ

]
(x+ uε) + ∂νAµ(x+ uε)

}

= ie

∫ 1

−1
du

{
ενF

µν(x+ uε) +
d

du
Aµ(x+ uε)

}
= −2ieενF

νµ(x) +O(ε2) + ieAµ(x+ ε)− iAµ(x− ε)
}

(6.38)

This expression enters (6.37) multiplied by γµγ5 and the terms marked in blue exactly cancel. Here

we expanded the integral involving Fµν(x+ uε) in anticipation that only linear terms in ε will be

important.

Thus we get

∂µJ
reg
µ5 (x) = ψ̄(x+ ε)

[←
/D − 2ieενF

νµ(x)γµ︸ ︷︷ ︸
extra term

+
→
/D

]
γ5ψ(x− ε) + +O(ε2) (6.39)

• Now we use this expression in the path integral∫
Dψ̄DψDAeiS ∂µJµ5(x)ψ(x1)ψ̄(x2) =

=

∫
Dψ̄DψDAeiS ψ̄(x+ ε)

[←
/D −2ieενF

νµ(x)γµ+
→
/D

]
γ5ψ(x− ε)ψ(x1)ψ̄(x2) (6.40)

and proceed exactly as before. The “bad” delta-functions do not appear as the fermions in the

current sit at different points, so that we will get the old result plus an extra contribution from the

term in ενF
νµ(x):

−2ie

∫
Dψ̄DψDAeiS ψ̄(x+ ε) ενF

νµ(x) γµγ5 ψ(x− ε)���
���ψ(x1)ψ̄(x2) (6.41)
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[extra fermion fields at x1,2 6= x do not change anything so we can forget them].

Let us deal with this integral in the following way: We will take the path integral over fermions

and leave the integral over photon fields as it stands for now. In this way, taking the integral over

fermions we should assume that Fµν is a certain given function — a background electromagnetic

field.

Thus we need to evaluate

N
∫
Dψ̄DψeiSF ψ̄(x+ ε) γµγ5 ψ(x− ε) (6.42)

[where the external field sits in the covariant derivative in the action] which is the same as

〈ΩA|T{ψ̄k(x+ ε)(γµγ5)kiψi(x− ε)}|ΩA〉 = −(γµγ5)ki〈ΩA|T{ψi(x− ε)ψ̄k(x+ ε)}|ΩA〉 (6.43)

where |ΩA〉 is the state with no fermions, but with classical EM fields present — electron propagator

in the background field. It will have to be multiplied by

(−2ie)ενF
νµ(x) (6.44)

and the limit is taken ε→ 0, so that we only need singular terms 1/εn in the propagator.

• Let us do this calculation. In perturbation theory

〈ΩA|T{ψi(x− ε)ψ̄k(x+ ε)}|ΩA〉 = (6.45)

To leading order in the field (i.e. without field) we have the usual propagator

〈0|T{ψi(x− ε)ψ̄k(x+ ε)}|0〉 = 〈x− ε|
(

i

i/∂ −��m

)
ik

|x+ ε〉 =

∫
d4p

(2π)4
〈x− ε| i

i/∂
|p〉〈p|x+ ε〉

=

∫
d4p

(2π)4i
e2ip·ε

(
1

−/p

)
ik

= − i

2π2

2/εik
(2ε)4

(6.46)

More formulas can be found in the Appendix:

This and many other calculations will be done using the following basic integrals

∫
ddx eiqx

Γ(α)

[−x2 + iε]α
= −iπd/22d−2α Γ(d/2− α)

[−q2 − iε]d/2−α∫
ddq e−iqx

Γ(α)

[−q2 − iε]α
= +iπd/22d−2α Γ(d/2− α)

[−x2 + iε]d/2−α
(6.47)

and
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∫
ddx

Γ(α)

(−x2 − a2 + iε)α
= −iπd/2 Γ(α− d/2)

[−a2 + iε]α−d/2∫
ddx

Γ(α)

(−x2 − a2 + iε)α
xµxν = −iπd/2

(
−gµν

2

) Γ(α− d/2− 1)

[−a2 + iε]α−d/2−1
(6.48)

At first sight this (simplest) term produces a very strong singularity ∼ 1/ε3! However, we have

to trace the propagator with γµγ5 and get zero:

1

ε4
(γµγ5)ki(/ε)ik =

1

ε4
Tr [γµγ5/ε] = 0 (6.49)

If we consider vector current and not axial-vector, there is no γ5 and we get a term ∼ εµ/ε4. This

will have to be multiplied with ενF
νµ, see (6.44), and again vanish thanks to F νµ = −Fµν . Thus,

the term without external field presents no danger.

• Now let us switch on the field:

〈0|T{ψi(x− ε)ψ̄k(x+ ε)}|0〉 = 〈x− ε| i
i /D
|x+ ε〉 = 〈x− ε| 1

/∂ − ie /A
|x+ ε〉

= 〈x− ε| 1
/∂

+
1

/∂
ie /A

1

/∂
+ . . . |x+ ε〉 (6.50)

This series generates contributions to all orders in the field, but in fact only the first-order term

will be necessary (the others are regular at ε→ 0). We have

〈x− ε| 1
/∂
ie /A

1

/∂
|x+ ε〉 = ie

∫
d4y〈x− ε| 1

/∂
|y〉 /A(y)〈y| 1

/∂
|x+ ε〉

= ie

(
i

2π2

)2 ∫
d4y

/x− /y − /ε
(x− y − ε)4

/A(y)
/y − /x− /ε

(y − x− ε)4
y′ = y − x

= ie

(
i

2π2

)2 ∫
d4y
−/y − /ε
(y + ε)4

/A(x+ y)
/y − /ε

(y − ε)4

=
ie

4π4
6

∫ 1

0
duuū

∫
d4y

(/y + /ε) /A(x+ y)(/y − /ε)
[u(y + ε)2 + ū(y − ε)2]4

(6.51)

The usual routine: rewrite the denominator

u(y + ε)2 + ū(y − ε)2 = [y + (2u− 1)ε]2 + 4uūε2 (6.52)

and shift the integration variable to get

. . . =
ie

4π4
6

∫ 1

0
duuū

∫
d4y

(/y + 2ū/ε) /A(x+ y − (2u− 1)ε)(/y − 2u/ε)

[y2 + 4uūε2]4
(6.53)

Now we can expand the background field around x:

Aξ(x+ y − (2u− 1)ε) = Aξ(x) + (y − (2u− 1)ε)α[∂αAξ](x) + . . . (6.54)
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because extra powers of y will result in extra powers of ε after integration. After some algebra one

obtains

. . . = − e

4π2

{
εξAξ
2ε4

/ε +
1

8ε2

[
∂αAξ(γαγξ/ε − /εγξγα)− 4εξ/ε ∂2Aξ

]
+ . . .

]}
(6.55)

The first term 1/ε2 does not contribute for the same reason as the term without photon field above,

and the last term ∼ ∂2A is already non-singular. Thus we only need one term and can use

γαγξ/ε − /εγξγα = 2iεαξρσε
ργ5γ

σ (6.56)

to get

. . . = − e

32π2

1

ε2
1

2
Fαξ2iεαξρσε

ργ5γ
σ

= − ie

16π2

1

ε2
F̃ρσ(x)εργ5γ

σ (6.57)

where

F̃ρσ =
1

2
ερσαβF

αβ (6.58)

[duality transformation — exchanges electric and magnetic fields; the second pair of Maxwell Eqs.

∂µF̃
µν = 0 — there exist no magnetic charges]

• It remains to take a trace tr[. . . γµγ5], take into account minus sign because we calculate ψ . . . ψ̄

and need ψ̄ . . . ψ, and multiply by (6.44). Obtain

−2ieεµF
αµ(x)(−1)

−ie
16π2

1

ε2
F̃ρσ(x)ερ tr

[
γ5γ

σγµγ5

]︸ ︷︷ ︸
4gµσ

(6.59)

Final step, we have to symmetrize over all directions of εα in Minkowski space:

〈 εαεβ〉 =
1

4
gαβ ε

2 (6.60)

and the final result reads

∂µJ
µ5(x) =

e2

8π2
FαβF̃

αβ

Adler-Bardeen Anomaly (6.61)

This is an exact operator relation, valid for insertions in arbitrary Green functions (up to contact

terms)

For the vector current we would zero because of the trace tr
[
γ5γ

σγµγ5

]
7→ tr

[
γ5γ

σγµ
]

= 0.
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6.3 Gell-Mann–Oakes–Renner relation and quark masses

We now turn over to QCD, electrons 7→ quarks and photons 7→ gluons, but at this point will

not need any details on quark-gluon interactions, so we can postpone the consistent construction

of QCD as a quantum theory for later.

This section will mostly deal with pions, mπ ' 140MeV , that are build from a light quark and

light antiquark, u or d and their somewhat heavier brothers kaons, mK ' 493MeV , that include

the strange quark (or antiquark).

• As a preliminary step, we have to derive some (simple) relation.

The pion decay constant fπ is defined as

〈Ω|ū(0)γµγ5d(0)|π+(q)〉 = ifπqµ (6.62)

It can be measured experimentally from the observed decay π+ → µ+ν which happens when the

u-quark and d̄ antiquark annihilate via weak interactions and produce a pair of leptons — a muon

and a neutrino:

fπ ' 132 MeV (π+ ∼ ud̄)

fK ' 155 MeV (K+ ∼ us̄) (6.63)

Since for any operator

〈p′|Ô(x)|p〉 = 〈p′|eiP̂ xÔ(0)e−iP̂ x|p〉 = ei(p
′−p)x〈p′|Ô(0)|p〉 (6.64)

one gets

∂µ〈0|ū(x)γµγ5d(x)|π+(q)〉
∣∣
x=0

= (−iqµ)ifπqµ = fπm
2
π (6.65)

On the other hand

∂µū(x)γµγ5d(x) = (mu +md)ū(x)iγ5d(x) + ū(x)
[ ←
/D −imu

]
γ5d(x)− ū(x)γ5

[ →
/D +imd

]
d(x)

= (mu +md)ū(x)iγ5d(x)− iū(x)
[
i
←
/D +mu

]
γ5d(x) + iū(x)γ5

[
i
→
/D −md

]
d(x)

(6.66)

The last two terms do not contribute to the matrix element (Dirac equation) so that we get

∂µ〈Ω|ū(x)γµγ5d(x)|π+(q)〉 = (mu +md)〈Ω|ū(x)iγ5d(x)|π+(q)〉 (6.67)

Comparing the two representations, get

〈Ω|ū(x)iγ5d(x)|π+(q)〉 =
fπm

2
π

mu +md
(6.68)

The J5(x) = ū(x)iγ5d(x) is called a pseudoscalar current (flavor-nonsinglet).

Lect. 15
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• Now the main part. Consider the correlation function

qµ

∫
d4x eiqx〈Ω|T {ū(x)γµγ5d(x) d̄(0)iγ5u(0)}|Ω〉

=

∫
d4x

(
−i ∂

∂xµ
eiqx

)
〈Ω|T {ū(x)γµγ5d(x) d̄(0)iγ5u(0)}|Ω〉

p.I.
= i

∫
d4x eiqx〈Ω|T {∂µū(x)γµγ5d(x) d̄(0)iγ5u(0)}|Ω〉

≡ i

∫
d4x eiqxN

∫
Dψ̄DψDAeSQCD ∂µū(x)γµγ5d(x) d̄(0)iγ5u(0) (6.69)

Here we can use the expression for the divergence of axial current in (6.66) and

∂µū(x)γµγ5d(x) eiSF = (mu +md)ū(x)iγ5d(x)eiSF

+ ū(x)γ5

(
δ

δd̄(x)
eiSF

)
−
(

δ

δu(x)
eiSF

)
γ5d(x) (6.70)

Note that in this case there is no anomaly since u and d quark are different.

Using this representation and integrating by parts in fermion fields in the path integral obtain

. . . = (mu +md) i

∫
d4x eiqx〈Ω|T {ū(x)iγ5d(x)d̄(0)iγ5u(0)}|Ω〉

+ i

∫
d4x eiqxδ(4)(x)〈Ω|T {−ū(x)γ5iγ5u(0)− d̄(0)iγ5γ5d(x)}|Ω〉

= (mu +md) i

∫
d4x eiqx〈Ω|T {ū(x)iγ5d(x)d̄(0)iγ5u(0)}|Ω〉+ 〈Ω|ūu+ d̄d|Ω〉 (6.71)

This is so far an exact identity. Let us consider it specifically at the point where

qµ = 0 : qµ = {0, 0, 0, 0} (6.72)

(all four components are zero). Then obviously

0 = (mu +md) i

∫
d4x 〈Ω|T {ū(x)iγ5d(x)d̄(0)iγ5u(0)}|Ω〉+ 〈Ω|ūu+ d̄d|Ω〉 (6.73)

Again, this is so far exact, but now we want to make an approximation for the correlation function

using the fact that pion mass is very small m2
π ∼ 0.02 GeV2 compared to other hadrons.

The correlation function can be written as a sum of contributions of intermediate hadron states

with proper quantum numbers inserting

1l = |π+〉〈π+|+
∑
S 6=π
|S〉〈S|
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or

�

�

�

�

↙ ↓ ↘
fπm

2
π

mu +md

1

m2
π −q2︸︷︷︸
→0

fπm
2
π

mu +md
(6.74)

If q2 � m2
π the pion contribution is just one of many, but if q2 = 0 it is enhanced by a huge factor

1/m2
π compared to all others (multipion states can only produce lnm2

π but not a pole, higher mass

states with pion quantum numbers are rather heavy mπ′ ∼ 1 GeV.)

Taking into account the pion contribution only (PCAC approximation) we obtain

−(〈ūu〉+ 〈d̄d〉) = (mu +md)
f2
πm

4
π

(mu +md)2

1

m2
π −q2︸︷︷︸
→0

=
f2
πm

2
π

mu +md
(6.75)

or

−(mu +md)(〈ūu〉+ 〈d̄d〉) = f2
πm

2
π (6.76)

— The Gell-Mann–Oakes–Renner (GMOR) relation.

• What happens with this relation if quark masses become very small?

• The l.h.s. goes to zero, thus either m2
π → 0, or f2

π → 0 (or both).

• Since m2
π/m

2
K ∼ 0.08 but f2

π/f
2
K ∼ 0.72, the first option seems much more likely.

• Massless particles mπ = 0 can only exist if protected by some symmetry. Since the Lagrangian

becomes chiral invariant in massless limit, maybe it is chiral symmetry?

• Note there is no anomaly in this case and ∂µJ
µ5
ud = 0 at quantum level.

• What happens in this limit with

〈q̄q〉 ≡ 〈Ω|q̄(0)q(0)|Ω〉 the chiral condensate (6.77)

Since q̄q is not invariant under chiral trafos, a non-zero vacuum expectation value would mean

that chiral symmetry is broken spontaneously (because Lagrangian is invariant).

• ! We will find (next Chapter) that spontaneous breaking of a continuous symmetry necessitates

existence of a massless particle (pion) — seems we are on a right track



6 WARD IDENTITIES AND QUANTUM ANOMALIES 84

Leaving a more detailed justification/discussion for later, let us assume that for small quark masses

〈q̄q〉 ∼ O(1) (6.78)

fπ ∼ O(1) (6.79)

m2
π ∼ O(mq) (6.80)

Under this assumption, it turns out to be possible to obtain a very decent estimate for quark masses

based on using GMOR relation(s) and some additional arguments (summary in: H. Leutwyler, 1982;

the idea goes back to an early (renown) work by Nambu and Iona-Lazinio, 1961).

• To this end we employ GMOR relations for the pion and also for K-mesons:

(mu +md)(〈ūu〉+ 〈d̄d〉) = −f2
πm

2
π

(mu +ms)(〈ūu〉+ 〈s̄s〉) = −f2
K+m

2
K+

(md +ms)(〈d̄d〉+ 〈s̄s〉) = −f2
K0m

2
K0 (6.81)

[the last two cannot have very high accuracy because mK ∼ 490 MeV is already not very small,

but we hope this will be sufficient].

Isospin symmetry:

mK+ ' mK0︸ ︷︷ ︸
observe

fK+ ' fK0︸ ︷︷ ︸
observe

〈ūu〉 ' 〈d̄d〉︸ ︷︷ ︸
assume

(6.82)

[accuracy ∼ 1− 3%].

It took some time to realize that isospin symmetry does not imply that mu ' md but rather is a

consequence of both of them being small, mu,md � hadron masses.

SU(3) flavor symmetry:

Extension of isospin to include “strange” particles, (Gell-Mann), typical accuracy ∼ 20%.

〈ūu〉 , 〈d̄d〉 ≈ 〈s̄s〉 expect accuracy ∼ 20%. (6.83)

Under these assumptions, forming proper combinations of the relations in (6.81), obtain

ms +mu

md +mu
≈
f2
Km

2
K

f2
πm

2
π

md −mu

md +mu
≈
f2
K0m

2
K0 − f2

K+m
2
K+

f2
πm

2
π

(6.84)

where from

ms

md
≈ 18± 5

md

mu
≈ 2.0± 0.4 (6.85)

To fix the overall scale, observe that all hadrons containing s-quark are typically 120-200 MeV

heavier that their counterparts with a d-quark, which suggests that ms ∼ 100−200 MeV. Analyzing

all relevant data one comes to an estimate (Leutwyler 1982)

mu ≈ 5 MeV , md ≈ 9 MeV , ms ≈ 190 MeV . (6.86)
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so that u and d quarks are very light as compared to even the pion mass. The error was estimated

in 1982 as about 50%. One also obtains

〈q̄q〉 ≈ −(250 MeV)3 , quark condensate (6.87)

The modern numbers are

mu(2 GeV) = (2.32± 0.10) MeV

md(2 GeV) = (4.71± 0.09) MeV Particle Data Group, updated August 2019

ms(2 GeV) = (92.7± 0.9) MeV (6.88)

(running masses in MS renormalization scheme at the scale µ = 2 GeV).

6.4 Decay π0 → γγ

Neutral pions usually end their life by decaying in two photons (probability 98.8%). The measured

decay rate

Γ(π0 → 2γ) = 7.95 · 10−6 MeV (6.89)

is responsible for a very short life time τ ∼ 8.5 · 10−17 sec. compared to τ ∼ 2.6 · 10−8 sec. for

charged π±. Can we calculate this decay rate in QFT?

〈γ(k1, λ1)γ(k2, λ2)|π0(q = k1 + k2)〉 = ? q2 = m2
π (6.90)

• Consider

〈γγ| 1l︸︷︷︸
|π0〉〈π0|+...

∂µJ
µ5|Ω〉 ' 〈γγ|π0〉 1

m2
π − q2

〈π0|∂µJµ5|Ω〉︸ ︷︷ ︸
fπm2

π

(6.91)

We need the amplitude (6.90) for pions on mass shell, q2 = m2
π, but can consider it for off-shell

pions as well. One should expect that

〈γγ|π0〉q2=m2
π
− 〈γγ|π0〉q2=0 = O(m2

π/Λ
2) (6.92)

where Λ is of order of typical hadron masses, so it is small. (The difference is of the same order as

higher-mass terms neglected in (6.91)). We get

〈γγ|π0〉q2=m2
π
' 〈γγ|π0〉q2=0 '

1

fπ
〈γ(k1)γ(k2)|∂µJµ5|Ω〉|(k1+k2)2=0 (6.93)

Thus the pion can be replaced at small momenta by the divergence of the axial current.

• This current is anomalous! We can use the QED expression (6.61) corrected for

• pion is an isospin-triplet

Jµ5(x) =
1√
2

[
ū(x)γµγ5u(x)− d̄(x)γµγ5d(x)

]
(6.94)
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• quarks have fractional charges e 7→ eue or e 7→ ede, respectively

• quarks have color (the current involves a sum over Nc quark species)

Thus for our case

∂µJ
µ5 =

1√
2

[
e2
u − e2

d

]
Nc ·

e2

8π2
FαβF̃

αβ (6.95)

with eu = 2/3, ed = −1/3, e2 = 4παQED αQED ' 1/137.

Using this expression (exact!) get

〈γγ|π0〉 ' 1

fπ

1√
2

[4

9
− 1

9

]
Nc

αQED

2π
〈γ(k1)γ(k2)|FαβF̃αβ|Ω〉 (6.96)

For a photon in the final state(
Aµ(x)

)(λ)

k
= ε∗(λ)

µ eikx(
Fµν(x)

)(λ)

k
=
(
∂µAν(x)− ∂νAµ(x)

)(λ)

k
= i(kµε

∗(λ)
ν − kνε∗(λ)

µ )eikx (6.97)

so that

〈γγ|FF̃ |0〉 =
1

2
εαβµν〈γγ|FαβFµν |0〉

= 2
1

2
εαβµν(i)2[k1αε

∗(λ1)
β − k1βε

∗(λ1)
α ][k2µε

∗(λ2)
ν − k2νε

∗(λ2)
µ ]

= 4εαβµν k
α
1 k

β
2 ε
∗(λ1)
µ ε∗(λ2)

ν (6.98)

and finally

〈γ(k1, λ1)γ(k2, λ2)|π0(q)〉 =
Nc

3
√

2

αQED

2π

1

fπ
4εαβµν k

α
1 k

β
2 ε
∗(λ1)
µ ε∗(λ2)

ν (6.99)

It remains to calculate the decay rate (see, e.g., Peskin-Schröder)

Γ(π0 → 2γ) =
∑
λ1,2

1

2mπ

∫
d3k1

(2π)32k10

d3k2

(2π)32k20
δ(4)(k1 + k2 − q)

∣∣〈γγ|π0(q)〉
∣∣2 (6.100)

[here q2 = m2
π, not zero!].

Obtain

Γtheory(π0 → 2γ) =

(
NcαQED

3π

)2 m3
π

32πf2
π

' 7.25 10−6 MeV

Γexp(π0 → 2γ) ' 7.95 10−6 MeV (6.101)

— a very impressive confirmation of Nc = 3 (color)!
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7 Non-abelian gauge theories
Lect. 16

Two especially important examples (occur in nature):

• SU(2)-group (electroweak interactions)

2× 2 matrices UU † = 1l ,detU = 1

generators ta =
1

2
σa , a = 1, 2, 3 Pauli matrices

structure constants [ta, tb]
!

= ifabctc[1

2
σa,

1

2
σb] = iεabc

1

2
σc ⇒ fabcSU(2) = εabc (7.1)

• SU(3)-group (strong interactions, QCD)

3× 3 matrices UU † = 1l , detU = 1

generators ta =
1

2
λa , a = 1, 2, . . . , 8 Gell-Mann matrices

structure constants [ta, tb]
!

= ifabctc

fabc = −f bac = −facb (7.2)

[Normalization convention tr[tatb] = 1
2δab]

• Gauge transformations

ψ(x)⇔

 ψ1

. . .

ψNc

 ψ(x) 7→ eiα
ataΨ(x)

Aaµ 7→ Aaµ +
1

g
∂µα

a + fabcAbµα
c for infinitesimal αa → 0 (7.3)

In what follows I sometimes use a matrix notation

Aµ ≡ Aaµta (7.4)

• Covariant derivative and nonabelian strength tensor∗

Dµ = ∂µ1l− igAaµta ≡ ∂µ − igAµ

[Dµ, Dν ]
!

= −igF aµνta ≡ −igFµν

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (7.5)

• Lagrangian

L = −1

4
(F aµν)2 + ψ̄(i /D −m)ψ (7.6)

∗In adjoint rep. (T c)ab = −ifabc, covariant derivative Dab
µ = ∂µδ

ab − igAcµ(T c)ab, where a, b, c = 1, . . . , N2
c − 1
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Note that the interactions have become much more complicated:

L = L0 + LI

LI = gψ̄Aaµt
aγµψ − gfabc(∂αAaµ)Aα,bAµ,c − 1

4
g2(feabAaµA

b
ν)(fecdAµ,cAν,d) (7.7)

Assuming that this theory can be quantized in the same way as QED one obtains the set of

• Feynman rules

Propagators:

〈0|T{ψiα(x)ψ̄jβ(y)}|0〉 = δij
∫

d4p

(2π)4i
e−ip(x−y)

(
1

m− /p− iε

)
αβ

〈0|T{Aaµ(x)Abν(y)}|0〉 = δab
∫

d4k

(2π)4i
e−ik(x−y) 1

k2 + iε

[
gµν − (1− ξ)kµkν

k2

]
(7.8)

Vertices:

a, µ

= igγµt
a

a, µ

b, ν c, ρ

k

p q
= gfabc

[
gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν

]

c, ρ d, σ

a, µ b, ν

= −ig2
[
fabef cde(gµρgνσ − gµσgνρ)

+ facef bde(gµνgρσ − gµσgνρ)
+ fadef bce(gµνgρσ − gµρgνσ)

] (7.9)

Is this a valid quantum theory?

7.1 QCD Ward identity at tree level

I will consider QCD as an example of a non-abelian QFT but the choice is mainly about terminology

(quarks, gluons, . . . ). The results are valid for any gauge group.

We have just discussed how important is to maintain gauge symmetry in QED at quantum level.

Symmetry results in existence of a conserved current and at quantum level is expressed by the

Ward identity. At the amplitude level in QED

kµ ·

 k

k

p
i

ik

j

 = 0 (7.10)
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This holds for arbitrary photon and electron virtualities up to the δ-function contributions that we

found above (contact terms). We want this identity to hold in QCD as well (otherwise the vacuum

will be “colored” etc.)

• Let us check the QCD Ward identity on a simple example: quark-antiquark annihilation in a

pair of gluons†

q(p) + q̄(p′)→ ga(k1) + gb(k2) (7.11)

k1
p’

k2

p’ k1

k2
p

kp’

k2

k1

pp

(3)(2)(1)

a

b

a

b b

a

c

3

• The first two diagrams together:

iMµν
1,2ε
∗
µ(k1)ε∗ν(k2) = ε∗µ(k1)ε∗ν(k2)

× (ig)2v̄(p′)

{
γµta

i

/p− /k2 −m
γνtb + γνtb

i

/k2 − /p′ −m
γµta

}
u(p) (7.12)

Replace

ε∗ν(k2) −→ k2ν (7.13)

Obtain

iMµν
1,2ε
∗
µ(k1)k2ν = ε∗µ(k1)(ig)2v̄(p′)

{
γµta

i

/p− /k2 −m
/k2t

b + /k2t
b i

/k2 − /p′ −m
γµta

}
u(p) (7.14)

Thanks to Dirac equation can replace

(/p−m)u(p) = 0, in the first term /k2u(p) = (/k2 − /p+m)u(p)

v̄(p′)(/p
′ +m) = 0, in the second term v̄(p′)/k2 = v̄(p′)(/k2 − /p′ −m) (7.15)

The propagators cancel and we get

iMµν
1,2ε
∗
µ(k1)k2ν = ε∗µ(k1)(ig)2v̄(p′)

{
− iγµ[ta, tb]

}
u(p)

= −g2ε∗µ(k1)v̄(p′)γµfabctcu(p) (7.16)

†copypasted from my QCD lecture notes; example from Peskin&Schröder
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• The third diagram:

iMµν
3 ε∗µ(k1)ε∗ν(k2) = ε∗µ(k1)ε∗ν(k2) (7.17)

× (ig)v̄(p′)γρt
cu(p)

−i
k2

3

gfabc
[
gµν(k2 − k1)ρ + gνρ(k3 − k2)µ + gρµ(k1 − k3)ν

]
now replace ε∗ν(k2) −→ k2ν

and use k1 + k2 + k3 = 0 −→ k2 = −k1 − k3 (7.18)

Then

ε∗ν(k2)[∗ ∗ ∗] −→ k2ν [∗ ∗ ∗]

= kµ2 (k2 − k1)ρ + kρ2(k3 − k2)µ + gρµ(k1 − k3) · k2

= (−k1 − k3)µ(−2k1 − k3)ρ + (−k1 − k3)ρ(2k3 + k1)µ + gρµ(k1 − k3) · (−k1 − k3)

= gρµk2
3 − k

ρ
3k

µ
3 − g

ρµk2
1 + kρ1k

µ
1 (7.19)

Hence

iMµν
3 ε∗µ(k1)k2ν = ε∗µ(k1)(ig)v̄(p′)γρt

cu(p)
−i
k2

3

gfabc
[
gρµk2

3 − k
ρ
3k

µ
3 − g

ρµk2
1 + kρ1k

µ
1

]
Assume k2

1 = 0 (on-shell) and ε∗µ(k1)kµ1 = 0 (physical polarization). Then:

• the last two terms vanish

• the second term vanishes as well:

(−kρ3)v̄(p′)γρu(p) = v̄(p′)[(/p
′ +m) + (/p−m)]u(p) = 0 (7.20)

• the first term gives:

iMµν
3 ε∗µ(k1)k2ν = ε∗µ(k1)g2v̄(p′)γµfabctcu(p) (7.21)

and exactly cancels the contribution of the first two diagrams!

Happy end? — No! — a disaster in loop diagrams (true quantum effects)

qν ·

( )
︸ ︷︷ ︸ /= 0

↘ all polarizations in intermediate state (7.22)

Gluons with unphysical polarizations can be produced −→ unitarity is broken:

2 Im /=

∫
d (phase space)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(7.23)

The moral is, we have to go back and define the quantum theory properly.



7 NON-ABELIAN GAUGE THEORIES 91

7.2 Path integral quantization for non-abelian gauge theories

Let us try to go the same road as in QED and see whether we will have any new issues. We want

to define a path-integral over gauge fields in a non-abelian theory (say, QCD)∫
DA exp

[
i

∫
d4x

(
−1

4
F aµνF

a;µν

)]
= ? (7.24)

The gauge trafo is now

ψ(x) 7→ eiα
ataψ(x) , αa = αa(x) ,

Aaµt
a 7→ eiα

ata
[
Abµt

b +
i

g
∂µ

]
e−iα

ata . (7.25)

This is valid for arbitrary α(x). If α(x)→ 0 this can be simplified to

Aaµ 7→ (Aα)aµ = Aaµ +
1

g
∂µα

a + fabcAbµα
c

= Aaµ +
1

g

(
∂µδ

ac + gfabcAbµ

)
αc

= Aaµ +
1

g

(
∂µδ

ac − ig(T b)acA
b
µ

)
αc (T b)ac = −ifacb,

= Aaµ +
1

g
Dac
µ α

c (7.26)

— covariant derivative in adjoint rep., a 8× 8 matrix (in QCD)

We impose the gauge condition

G(A) = 0 (7.27)

and insert the Faddeev-Popov “1” inside the path integral:

1 =

∫
Dα(x) δ

[
G(Aα)

]
det

(
δG(Aα)

∂α

)
(7.28)

[Note that if G is a linear operator then det(. . .) does not depend on α.]

Then

. . . =

∫
DA

∫
Dα δ

[
G(Aα)

]
det

(
δG(Aα)

∂α

)
eiS[A] (7.29)

and using ∫
DA =

∫
DAα shift of variable

S[A] = S[Aα] gauge invariance (7.30)

arrive at

. . . =
��

��
�

(∫
Dα

)∫
DAδ

[
G(A)

]
det

(
δG(Aα)

∂α

)
eiS[A] (7.31)
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Let us take the same generalized Lorentz-type gauge condition as in QED:

G(A) = ∂µAaµ − ωa(x)︸ ︷︷ ︸
arbitrary function

(7.32)

and integrate over all functions ωa(x) with a Gaussian weight (as in QED). In this way we will get

a new (gauge-fixing) term in the action and obtain the (expected) gluon propagator

〈0|T{Aaµ(x)Abν(y)}|0〉 = δab
∫

d4k

(2π)4i
e−ik(x−y) 1

k2 + iε

[
gµν − ξ

kµkν
k2

]
(7.33)

• The difference is the determinant:

in QED:

det

(
δG(Aα)

∂α

)
= det

[
δ

δα(x)

(
∂µA

µ(y) +
1

e
∂µ∂

µα(y)− ω(y)
)]

= det
[
∂2δ(4)(x− y)

]
in QCD:

det

(
δG(Aα)

∂α

)
= det

[
δ

δα(x)

(
∂µA

µ(y) +
1

g
∂µD

µα(y)− ω(y)
)]

= det
[
∂µD

µδ(4)(x− y)
]

(7.34)

so that the determinant depends now on the gauge field in a nontrivial way and cannot be discarded.

• Faddeev&Popov’s (second) trick: Write the det. as a path integral over auxiliary grassmanian

fields

det
[
∂µD

µδ(4)(x− y)
]

=

∫
DcDc̄ exp

{
i

∫
d4x c̄a(x)

(
− ∂µDac

µ

)
cc(x)

}
(7.35)

• ca(x), a = 1, . . . , 8 are complex Grassman fields (anticommuting) in adjoint rep. of the gauge

group (as gluons). Note c̄a ≡ (c∗)a.

• ca(x) are spin-zero (scalar) fields (do not obey the spin-statistics theorem), thus they cannot

be physical

• ca(x) are called Faddeev-Popov ghost fields

Lghost(x) = c̄a(x)
(
− ∂2δac − g∂µfabcAbµ(x)

)
cc(x) (7.36)

Propagator:

ca(x)cb(y) = δab
∫

d4p

(2π)4i
e−ik(x−y) 1

−k2 − iε

a b

=
iδab

p2 + iε
(7.37)
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Ghost-gluon vertex:

b; �

a 

p

= −gfabcpµ (7.38)

The complete nonabelian (QCD) Lagrangian is then

LQCD = −1

4
(F aµν)2 +

1

2ξ
(∂µAaµ)2 + ψ̄(i /D −m)ψ + c̄a(−∂µDac

µ )cc (7.39)

• The role of the ghost fields is to subtract contributions of unphysical polarizations of gluon fields.

How it works:

In QED:
2

phys: photons

2

all photons

(7.40)

In QCD:
2

phys: gluons

2

all gluons

+ghosts

Lect. 17
• Why the gauge fields remain massless? Consider QED first:

Free photon propagator in Feynman gauge

D(0)
µν (x) =

∫
d4k

(2π)4i

gµν
k2 + iε

e−ikx , D(0)
µν (k) =

gµν
k2 + iε

(7.41)

Exact photon propagator

Dµν(k) = (7.42)

The last pictured contribution is the repetition of the second one; can happen separated by large

time interval

Such contributions are called “one-particle reducible”, they are simple and can be summed up
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One defines photon self energy as the sum of all 1PI diagrams (amputated):

Πµν(k) =

= i

∫
d4x eikx 〈Ω|Jµ(x)Jν(0)|Ω〉 (7.43)

Then

Dµν(k) = (7.44)

or

Dµν(k) = D(0)
µν (k) +D(0)

µµ1
(k)Πµ1µ2(k)D(0)

µ2ν(k) + . . . (7.45)

⇒ Dyson equation:

↙ exact!
Dµν(k) = D(0)

µν (k) +D(0)
µµ1

(k)Πµ1µ2(k)Dµ2ν(k) (7.46)

Using D
(0)
µν (k) = gµν/k

2 this yields an equation

k2Dµν(k) = gµν + Πµ
µ2(k)Dµ2ν(k) =⇒

[
k2gµµ1 −Πµµ1

]
Dµ1ν = gµν (7.47)

Let (Lorentz invariance)

Πµν(k) = gµν a1(k2) + kµkν a2(k2)

Dµν(k) = gµν d1(k2) + kµkν d2(k2) (7.48)

Then

gµν =
[
k2 − a1

]
d1 gµν +

[
k2 − a1

]
kµkν d2 − kµkν d1a1 − k2d2a2 kµkν (7.49)

Collecting the terms ∝ gµν :

1 =
[
k2 − a1

]
d1 =⇒ d1(k2) =

1

k2 − a1(k2)
(7.50)

Therefore

Dµν(k) =
gµν

k2 − a1(k2) + iε
+O(kµkν) (7.51)

and in a general situation a1(k2 = 0) 6= 0 so that the photon would get a mass if not the Ward

identity:

kµΠµν = 0 ⇒ Πµν(k) =
(
gµνk

2 − kµkν
)

Π(k2) ,

⇒ a1(k2) = k2Π(k2) , a2(k2) = −Π(k2) (7.52)
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kµΠµν = 0 ⇒ kµ
[
gµν a1(k2) + kµkν a2(k2)

]
= 0 ⇒ a1(k2) = −k2a2(k2) (7.53)

Thus finally

Dµν(k) =
gµν

k2[1−Π(k2)]
(7.54)

— the QED photon remains massless (to all orders in perturbation theory)

• The derivation in QCD is the same, but in order that the Ward identity is satisfied we need to

include ghost loops:

ΠQCD
µν (p) =

= (gµνp
2 − pµpν)ΠQCD(p2) (7.55)

Thus, as a consequence of gauge invariance (= Ward id.), gluon has no mass.

8 Spontaneous symmetry breaking and the Higgs mechanism

• Example I: Breaking of a discrete symmetry

Consider as simple scalar theory with a sign change for the mass term:

L(x) =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4

−→

L(x) =
1

2
(∂µφ)2 +

1

2
µ2φ2 − λ

4!
φ4 (8.1)

Potential

V (φ) = −1

2
µ2φ2 − λ

4!
φ4 (8.2)

−→

↑
φ0 = ±v =

√
6

λ
µ (8.3)

Since the lowest energy state is by definition the vacuum state, v” corresponds to the vacuum

expectation value (VEV) of φ(x): v = 〈Ω|φ|Ω〉. Note that 〈Ω|φ|Ω〉 is obviously not invariant under

φ→ −φ so that choosing the particular sign 〈Ω|φ|Ω〉 = ±v we break the symmetry.

Let

φ(x) = v + σ(x) (8.4)



8 SPONTANEOUS SYMMETRY BREAKING AND THE HIGGS MECHANISM 96

This makes sense if we consider small fluctuations near the bottom of the potential. In this case

v = 〈Ω
Let us rewrite

L(φ) = L(v + σ) −→ L′(σ) (8.5)

• The linear term ∼ σ will not appear (because φ = v is a minimum)

• Can omit constants like v4, v2 as they do not influence EOM

Obtain after a short calculation

L′ = 1

2
(∂µσ)2 − 1

2
(2µ2)σ2︸ ︷︷ ︸

mass term

−
√
λ

6
µσ3 − λ

4!
σ4︸ ︷︷ ︸

interactions

(8.6)

• a scalar field σ with mass mσ =
√

2µ, with ∼ σ3 and ∼ σ4 interactions.

• the symmetry φ→ −φ is not manifest, it is hidden in the relations between the couplings

mσσ
2 , g1σ

3 , g2σ
4

• these relations must hold also for running couplings (if the symmetry is not broken by renor-

malization, so it persists in quantum theory)

— This is all what happens with discrete symmetries, hier Z(2).

• Example II: Breaking of a continuous symmetry

Let us now assume that φ has several components — “Linear σ-model”

L =
1

2
(∂µφ

a)2 +
1

2
µ2(φa)2 − λ

4
[(φa)2]2

↘
i = 1 . . . , N , 4, not 4! to avoid ugly

√
6 (8.7)

This model has a O(N) symmetry (cf. Sec. 3.4)

φa 7→ Rabφ
b , RTR = 1l (8.8)

The potential has a “mexican hat” shape

V (φa) = V (φ2) = −1

2
µ2φ2 +

λ

4
φ4

minima: (φa)2 = v2 =
µ2

λ

choose: φa0 = {0, 0, . . . , v} (8.9)
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In order to describe the system close to the chosen minimum, redefine (cf. Sect. 3.4)

φa(x) = {π1(x), . . . πN−1(x)︸ ︷︷ ︸
N−1

, v + σ(x)} (8.10)

and rewrite the Lagrangian in terms of new fields omitting unessential constants. Get

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)2 − 1

2
(2µ2)σ2

−
√
λµσ3 −

√
λµ(πk)2σ − λ

4
σ4 − λ

2
π2σ2 − λ

4
π4 (8.11)

• massive field σ, mσ =
√

2µ — exactly as before

• N − 1 massless “pions”

• Why N − 1 — a group theory interpretation.

In N dimensions there are N(N − 1)/2 independent rotations (number of generators/symmetries):

Indeed, a rotation happens in a plain, and a plain is defined by two basis vectors; hence there exist

N(N − 1)/2 different plains.

After the symmetry breaking O(N) 7→ O(N − 1) the (N − 1)(N − 2)/2 symmetry transformations

remain (corresponding symmetries are not broken) and the number of broken symmetries is

1

2
N(N − 1)− 1

2
(N − 1)(N − 2) = N − 1 (8.12)

This is exactly the number of massless pions that we have found.

• This situation is very general and can be formulated as

For every spontaneously broken continuous

symmetry there must be a massless particle
Goldstone theorem (8.13)

Proof:

I
Classically

L = (terms with derivatives) − V (φ) (8.14)

Let φa0 = const be a minimum of V (φ), i.e.

∂

∂φa
V
∣∣∣
φa(x)=φa0

= 0 (8.15)

and

V (φ) = V (φ0) +
1

2
(φ− φ0)a(φ− φ0)b

(
∂2

∂φa∂φb
V

)
φ0

+ . . . (8.16)
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Let

m2
ab

!
=

(
∂2

∂φa∂φb
V

)
φ0

(8.17)

— It is a symmetric matrix m2
ab = m2

ba with non-negative eigenvalues (because φ0 = minimum).

Let

φa 7→ φa + ∆a(φ) (8.18)

be an infinitesimal symmetry transformation of the Lagrangian:

L(φa) = L(φa + ∆a(φ)) (8.19)

This is valid for arbitrary φ(x). For constant fields φ(x) = φ the terms with derivatives vanish, so

that the potential has to be invariant under such trafos as well:

V (φa) = V (φa + ∆a(φ)) (8.20)

and therefore

∆a(φ)
∂

∂φa
V (φ) = 0 (8.21)

Let us take another derivative of this equation, ∂/∂φb, and put φ→ φ0 at the end. Obtain

0 =

(
∂∆a

∂φb

)
φ0

(
∂V

∂φa

)
φ0︸ ︷︷ ︸

=0

+∆a(φ0)

(
∂2

∂φa∂φb
V

)
φ0︸ ︷︷ ︸

=m2
ab

(8.22)

Therefore

∆a(φ0)m2
ab = 0 (8.23)

Thus, there are two possibilities:

(1) ∆a(φ0) = 0 — this means that the corresponding symmetry transformation is not broken

(2) ∆a(φ0) 6= 0 — the symmetry is broken and ∆a(φ0) is the (left) eigenvector of m2
ab (the mass

matrix) with zero eigenvalue — a massless particle.

J

• A full-fledged proof in quantum theory is more complicated. E.g. in the above example of the

linear σ-model is has to happen that exact “pion” propagator still contains a pole at p2 = 0, alias

that the self-energy vanishes at zero momentum in the sum of all diagrams in every order of pert.

theory:

[here solid line is a pion, short dashes a sigma-meson]. The idea of the proof is that taking

into account quantum corrections leads to a renormalized Lagrangian with an effective potential

V (φ)→ Veff (φ) and the above argumentation remains valid if Veff (φ) retains the same symmetries.
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8.1 The abelian Higgs model

• Consider the following theory (a version of scalar QED):

L = −1

4
F 2
µν +

∣∣Dµφ
∣∣2 − V (φ) , Dµ = ∂µ + ieAµ (8.24)

where

Aµ(x): a photon

φ(x): a complex scalar field

This theory is gauge-invariant [U(1)-symmetry]

φ(x) 7→ eiα(x)φ(x)

Aµ(x) 7→ Aµ(x)− 1

e
∂µα(x) (8.25)

Let us take the potential for the scalar field with a “wrong” sign of the mass term (as in above

examples)

V (φ) = −µ2φ∗φ+
λ

2
(φ∗φ)2, , µ2 > 0 (8.26)

In this case the U(1) symmetry will be broken spontaneously with

|φ0|2 = v2 =
µ2

λ
(8.27)

We can choose φ0 to have arbitrary phase

φ0 = veiα (8.28)

All choices are equivalent, let us take a real φ0 for definiteness

φ0 = v =

√
µ2

λ
(8.29)

Expanding around the chosen minimum, we can write

φ(x) = φ0︸︷︷︸
=v

+
1√
2

(
φ1(x) + i φ2(x)

)
(8.30)

and re-write the Lagrangian in terms of real fields φ1(x) and φ2(x).

We will get:

(1) From the potential

V (φ) =
�
�
��− 1

2λ
µ4 +

1

2
(2µ2)φ2

1 + interactions (8.31)

Thus
— φ1 has mass

√
2µ

— φ2 is massless
} as expected (Goldstone)
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(2) From the interactions with the gauge field

∣∣Dµφ
∣∣2 =

[
(∂µ − ieAµ)φ∗

][
(∂µ + ieAµ)φ

]
=

1

2
(∂µφ1)2 +

1

2
(∂µφ2)2 +

√
2evAµ∂

µφ2 + e2v2AµA
µ

+O(φ3, φ2A, . . .) (8.32)

(?!) A mass term for the photon field

L = . . .+
1

2
m2
AA

2 , m2
A = 2e2φ2

0 = 2e2v2 (8.33)

The sign is correct because

1

2
m2
AA

2 =
1

2
m2
A

(
A2

0 −A2
z − ~A2

⊥︸︷︷︸
phys. photons

)
(8.34)

How could it happen that photon acquires a mass?

• Remind the usual argument: Lect. 18

Photon propagator

Dµν(k) = (8.35)

where the shaded blob is

Πµν(k) = i

∫
d4x eikx 〈Ω|Jµ(x)Jν(0)|Ω〉 = (gµνk

2 − kµkν)Π(k2) (8.36)

so that

Dµν(k) =
gµν
k2

+
gµµ′

k2
(gµ′ν′k

2 − kµ′kν′)Π(k2)
gν′ν
k2

+ . . .

=
gµν

k2(1−Π(k2))
+O(kµkν) (8.37)

Thus photon has no mass, but under implicit assumption that Π(k2) does not have a pole at k2 → 0.

A pole means a contribution of a massless particle. Since one-particle reducible diagrams with a

photon in the intermediate state are excluded by construction, the lowest mass state contributing

to Π(k2) in QED is an electron-positron pair, thus no pole.

• What happens in our case?

L 3
√

2evAµ∂
µφ2

�

k

=
√

2ve(−ikµ) = − imAk
µ

L 3 1

2
m2
AAµA

µ �

�

= m2
Agµν (8.38)
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Note that mA =
√

2ve = O(e) so that to O(e2) accuracy

k

= m2
Agµν + (−imAk

µ)
1

−k2
(+imAk

ν)

= m2
A(gµν −

kµkν
k2︸ ︷︷ ︸

from Goldstone

) ≡ (gµνk
2 − kµkν)Π(k2) (8.39)

We conclude that

• kµΠµν = 0 — Ward Id. is satisfied

• Π(k2) =
m2
A

k2
has a pole at k2 = 0, thus

Dµν(k) =
gµν

k2(1−Π(k2))
=

gµν

k2(1− m2
A
k2 )

=
gµν

k2 −m2
A

⇒ mass (8.40)

• Unitary gauge [the fate of the Goldstone boson. . . ]

Our theory is invariant under (local) phase transformations

φ(x) 7→ eiα(x)φ(x) Aµ(x) 7→ Aµ(x)− 1

e
∂µα(x) (8.41)

We can choose the phase (fix the gauge) in such a way that ∀x, φ(x) = real number. In this case

φ(x) ≡ φ1(x) in our notation, and the φ2(x) does not exist! (It basically means that our Goldstone

particle can be gauged away). What happens in this case?

L = −1

4
F 2
µν +

[
(∂µ − ieAµ)φ∗

][
(∂µ + ieAµ)φ

]
− V (φ)

φ=φ∗7→ −1

4
F 2
µν + (∂µφ)(∂µφ) + e2φ2AµA

µ − V (φ) (8.42)

If V (φ) has a minimum at φ = v = 〈Ω|φ|Ω〉, then we can write φ(x) = v + φ1(x) and get

e2φ2AµA
µ 7→ e2(v + φ1(x))2A2

µ = m2
AA

2
µ + interactions (8.43)

Thus we get

— a massive vector field Aµ
— a massive scalar field φ1 from V (v + φ1)

— a massless (Goldstone) particle disappeared?

Let us count the number of degrees of freedom:

• At the Lagrangian level: 2 real functions to describe a complex-valued φ(x), 2 real functions

to describe photons with physical polarizations. In total 2+2=4.



9 THE STANDARD MODEL: THEORY 102

• In the particle spectra: 1 real function to describe a real field φ1(x), 3 real functions to

describe a massive vector field Aµ (A reduction from 3 to two polarizations is specific for

massless vector particles as for k2 = 0 Lorentz gauge condition does not fix the potential

uniquely). In total 1+3=4.

Thus, the degree of freedom corresponding to the Goldstone boson is effectively “eaten up” by the

vector field which can have not only two usual transverse polarizations, but also a longitudinal

polarization as well.

9 The Standard Model: Theory

Weak interactions:

First example: a β-decay

• Pauli (1930): Neutrino needed to carry away energy

n→ peν̄e ↔ d→ ueν̄e (9.1)

• Fermi (1933): A four-fermion Lagrangian

• Yang&Lee (1954-56). Wu (1957, exp): parity violation

• Marshak&Sudarshan, Feynman&Gell-Mann (1957): A V −A structure (vector minus axial)

δLF = 2
√

2GF (ēLγ
µνL)(ūLγµdL)

d u

�

e e

dL =
1− γ5

2
d = PLd (9.2)

!! Only left-handed particles take part in weak interactions

Problem: a theory involving the four-fermion interactions is not renormalizable. Within the Wilson

effective action approach this means that GF has to be of the order of inverse UV cutoff squared:

GF ∼
1

M2
UV

(9.3)

so it can only be an effective description which must be substituted by a more fundamental theory

at large momenta (small distances).

An old idea: split the four-fermion interaction in two parts mediated by some vector particle

exchange (W-boson):

d u

�

e e

d u

�

e e

W

�

g

D(W )
µν ∼

gµν
m2
W − q2

q2→0⇒ GF√
2

=
g2

8m2
W

(9.4)

In order to realize this scenario one needs a massive vector particle with electric charge.
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9.1 The electroweak (Glashow-Weinberg-Salam) Lagrangian

The SM Lagrangian is rather complicated, so let us start building it piece-by-piece.

• Assume there exists a complex scalar field φ(x)

• Assume gauge symmetry SU(2)× U(1) such that

φ(x) 7→ φ′(x) = eiα
a(x)taei

1
2
β(x)φ(x) (9.5)

so that φ(x) is a two-component spinor w.r.t. SU(2):

φ(x) =

(
φ1(x)

φ2(x)

)
ta =

1

2
σa , a = 1, 2, 3 (9.6)

The factor 1/2 in ei
1
2
β(x) is the U(1) charge of the scalar field.

— convenient to introduce this way instead of writing (later) gauge-field trafo with . . . 1
eφ
∂µβ(x)

• Assume the Lagrangian involves a Mexican-hat-type potential V (φ such that φ(x) develops a

nonzero VEV. The standard choice is

〈φ〉 =
1√
2

(
0

v

)
(9.7)

• There exist in total 4 symmetry transformations: α1, α2, α3, β. If we choose

α1 = 0 α2 = 0 α3 = β (9.8)

the VEV does not change (for our specific choice), 〈φ′〉 = 〈φ〉, so that

— one symmetry is not broken

— three symmetries are broken spontaneously

— will get three massless Goldstone bosons

• We will need four gauge fields (3 for SU(2) and 1 for U(1)) to construct a gauge-invariant

Lagrangian

— Three Goldstone bosons will be used to produce three massive gauge fields

— One gauge field will remain massless. This will be the photon.

! We will get a unified theory of electromagnetic and weak interactions

• The Lagrangian will have a kinetic energy term for the scalar field in which we wile need to

promote ∂µ to a covariant derivative:

L = . . .+
∣∣∣Dµφ

∣∣∣2 + . . .
↙ U(1) charge

Dµφ(x) =
(
∂µ −igAaµta︸ ︷︷ ︸

like in QCD

−i1
2
g′Bµ︸ ︷︷ ︸

like in QED

)
φ(x) (9.9)



9 THE STANDARD MODEL: THEORY 104

Then ∣∣∣Dµφ
∣∣∣2
φ=〈φ〉

=
1

2
(0, v)

(
gAaµt

a +
1

2
g′Bµ1l

)(
gAbµtb +

1

2
g′Bµ1l

)(0

v

)

=
1

2

v2

4

[
g2(A1

µ)2 + g2(A2
µ)2 − (−gA3

µ + g′Bµ)2

]
(9.10)

Define:

W±µ =
1√
2

(
A1
µ ∓ iA2

µ

)
W bosons (9.11)

Z0
µ =

1√
g2 + g′2

(
gA3

µ − g′Bµ
)

Z boson (9.12)

Aµ =
1√

g2 + g′2

(
g′A3

µ + gBµ

)
Photon (9.13)

(9.14)

Or, define (Weinberg mixing angle)

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

(9.15)

and (
Z0

A

)
=

(
cos θW − sin θW
sin θW cos θW

)(
A3

B

)
(9.16)

Then

mW = g
v

2

mZ = (g2 + g′2)1/2 v

2
=

mW

cos θW

mA = 0 (9.17)

! A prediction: a new particle: Z0 boson. (We only need W± for β-decay)

! A prediction: Higgs particle:

The scalar field will fluctuate around its VEV:

φ(x) = U(x)︸ ︷︷ ︸
→1,unitary gauge

· 1√
2

(
0

v + h(x)

)
h(x) : Higgs field (9.18)

An example of a (renormalizable) scalar potential that leads to the nonzero VEV is

V (φ) = −µ2φ†φ+ λ(φ†φ)2 (9.19)
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The minimum of the potential is at

v =

(
µ2

λ

)1/2

(9.20)

and in unitary gauge the potential takes the form

V (φ) = µ2h2 + λvh3 +
1

4
λh4 ≡ 1

2
m2
h +

√
λ

2
mhh

3 +
1

4
λh4 (9.21)

with

mh =
√

2µ2 =

√
λ

2
v (9.22)

The term . . .
∣∣∣Dµφ

∣∣∣2 . . . will then produce the kinetic energy contribution to Higgs and also Higgs

couplings to W± and Z-bosons:∣∣∣Dµφ
∣∣∣2 → 1

2
(∂µh)2 +

[
m2
WW

µ+W−µ +
1

2
m2
ZZ

µZµ

](
1 +

h

v

)2

(9.23)

Lect. 19
• The next step: we want to add fermions — quarks and leptons.

Problem:

Only left-handed particles take part in weak interactions. For free particles

ψ̄i/∂ψ = ψ̄Li/∂ψL + ψ̄Ri/∂ψR (9.24)

Usually we introduce the interaction by promoting i/∂ to a covariant derivative, but how to do this

in such a way that electromagnetism interacts equally with left-handed and right-handed fermions,

but weak interaction only affects left-handed fermions?

Solution:

Left-handed ψL and right-handed φR fermions transform according to different reps. of the SU(2)

group:

ψL =

(
ψ1
L

ψ2
L

)
doublet (spinor) (like φ)

ψR = ψR singlet (scalar) (9.25)

This means that from the viewpoint of SU(2) interactions, e.g., the left-handed electron and right-

handed electron are completely different particles!

The covariant derivatives are in this case also different:

(Dµ)spinor = ∂µ1l− igAaµta − ig′Y Bµ1l ← a 2x2 matrix

(Dµ)scalar = ∂µ − ig′Ỹ Bµ (9.26)

where Y and Ỹ are numbers which can (will) be chosen in such a way that our fermions have

correct electric charges. They are called Hypercharges. For the scalar field we have chosen

Yφ =
1

2
(9.27)
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In terms of the physical states this becomes

Dµ = ∂µ −
ig√

2

(
W+
µ T

+ + (W−µ T
−
)
− i√

g2 + g′2
Zµ(g2T 3 − g′2Y )− i

gg′

√
g2 + g′2Aµ (T3 + Y )︸ ︷︷ ︸

Q

(9.28)

where T± = (T1 ± iT2).

• The following table summarizes the list of fermion fields that exist in Nature:

Quarks

QL =

(
U

D

)
L

=

families (generations)︷ ︸︸ ︷(
u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

, Y =
1

6

UR = uR, cR, tR Ỹ =
2

3

DR = dR, sR, bR Ỹ = −1

3
(9.29)

Leptons

LL =

(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

, Y = −1

2

(?)(νe)R, (?)(νµ)R, (?)(ντ )R,

LR = eR, µR, τR, Ỹ = −1 (9.30)

(Here the electric charge Q = T3 + Y , T3 is zero for r.h. quarks as they are singlets to SU(2)). At

the time when the SM was formulated, only left-handed neutrinos were known to exist. Today we

know that right-handed neutrinos exist as well, but we are still not sure if they can be included in

the SM in the “standard” way.

Now we have all particles build in, but there are still two problems:

1. There is a danger that SU(2) × U(1) symmetry can be broken by quantum anomalies [we

have axial-vector interactions]

2. Our fermions are so far massless

• (1) First, anomaly problem.

The Adler-Bardeen anomaly that we considered in detail in Sect. 6.2 can also be derived from the

calculation of the triangle diagram

�

�

J

�5

∂µJ
µ5(x) =

e2

8π2
FαβF̃

αβ (9.31)
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Naively, this diagram has to vanish but in fact it does not because of the necessity to introduce

a regularization. In SM model there are potentially many anomalous “triangles” — one for every

(classically) conserved current and for every pair of gauge fields

U(1)

U(1) U(1)

U(1)

SU(2) SU(2)

SU(2)

SU(2) SU(2)

SU(2)

SU(3) SU(3)

(9.32)

If at least one of these anomalies is non-zero, gauge symmetry will be broken and our construction

will be worthless. However, a miracle happens (sometimes!):

All anomalies cancel in the sum of quark and lepton triangles if

— the number of lepton families is equal to the number of quark families

— the hypercharges are chosen to reproduce the electric charges of observed particles

Under these two conditions the SM is anomaly-free!

• (1) Second, fermion masses (quarks and leptons)

The usual way to introduce masses for Dirac fermions

ψ̄i /Dψ 7→ ψ̄(i /D −m)ψ (9.33)

However

mψ̄ψ = mψ̄
[1 + γ5

2
+

1− γ5

2

]
ψ = mψ̄LψR +mψ̄RψL (9.34)

and we cannot write such terms because ψL ≡ ψaL is a spinor whereas ψR is a scalar (of SU(2)).

Solution:

add a term to the Lagrangian (electron as example)

δLe = −λe
(
ĒL · Φ

)
eR + h.c. = −λe

(
ĒaLΦa

)
eR + h.c.

= −λe
(
ν̄Le , eL

)(φ1

φ2

)
eR + h.c. (9.35)

[“h.c.” = hermitian conjugate]

After the spontaneous symmetry breaking

Φ(x) =
1√
2

(
0

v + h(x)

)
, v = 〈Φ〉 (9.36)

we get

δLe = − 1√
2
λev(ēLeR)︸ ︷︷ ︸

mass term

− 1√
2
λeh(ēLeR)︸ ︷︷ ︸

electron-higgs coupling

+ h.c. (9.37)
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so

me =
1√
2
λev , λe : ”Yukawa coupling” (parameter) (9.38)

Down-type quarks can be given mass in precisely the same way, but for up-type quarks we have

to do it slightly differently: Observe that there exist two possibilities to make a SU(2) scalar from

two spinors:

Φ 7→ UΦ , UU † = 1l, detU = 1

(1) Φ†Φ 7→ Φ†U †UΦ = Φ†Φ ,

(2) ΦaεabΦ
b 7→ Φa′Ua′aεabUbb′Φ = detU ΦaεabΦ

b (9.39)

Hence we can add (e.g. for quarks in the first family)

δLq = −λd
(
Q̄L · Φ

)
dR − λu

(
Q̄aLεabΦ

b†)uR + h.c. (9.40)

to get

md =
1√
2
λdv , mu =

1√
2
λuv (9.41)

§ A new parameter for every massive fermion. . .

© A prediction: Higgs coupling to quarks/leptons is proportional to their mass! Higgs couples

most strongly to top-quarks and very weakly to u, d quarks and electrons.

N.B. One can check that the hypercharges sum to zero in both terms so that they are U(1) invariant.

9.2 The CKM matrix

• With three families of quarks and leptons one has more possibilities to add Yukawa interactions,

e.g.,

δLQ = −λ
(
Q̄

(1)
L · Φ

)
Q

(2)
R + h.c. (9.42)

where the superscript (1), (2) labels the family. In this way after symmetry breaking one also

obtains nondiagonal in flavor terms like

− 1√
2
λds(d̄LsR) + h.c. (9.43)

— a mass matrix. Physical quark/lepton states Q′ correspond to eigenstates of the mass matrix,

and their masses correspond to the eigenvalues, e.g.

U iL = Uiku U
′j
L , Di

L = Uikd D
′j
L ,

U iL =
(
uL, cL, tL

)
, Di

L =
(
dL, sL, bL

)
. (9.44)

Note that Uiku and Uikd are in general different unitary matrices (do not need to be the same),

UU† = 1l, detU = 1.
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• The “primed” fields are those ones that we identify as quarks which participate, e.g., in strong

interactions. It makes sense, therefore, to rewrite also the weak interaction terms in terms of

physical fields. For example, the u→ d transition due to emission of the W-boson (β-decay)

W+
µ ū

i
Lγ

µdiL 7→ W+
µ ū

′i
L

(
U†uUd

)
ij
γµd

′j
L (9.45)

The CKM matrix:

Vij =
(
U†uUd

)
ij

⇐ 3× 3 unitary matrix (9.46)

and as the result the weak interaction becomes non-diagonal — we obtain mixing between different

families:

Vij =

Vud Vus VubVcd Vcs Vcb
Vtd Vts Vtb

 (9.47)

Thus in Nature we observe transitions between quarks belonging to different families, e.g.

b → ce+ν
b



V

b

W

+

e

+

�

e (9.48)

— always between “up”-type and “down”-type quarks

— always with a change of electric charge by one unit

• Why only with an electric charge change? We also have weak interactions generated by a neutral

Z−0 boson exchange?

— Yes, but:

Z0
µū

i
Lγ

µuiL 7→ Z0
µū
′i
L

(
U†uUu

)
ij︸ ︷︷ ︸

1l

γµu
′j
L (9.49)

— The SM Lagrangian does not contain terms corresponding to transitions between quarks of

different flavor mediated by electrically neutral Z0 boson. Standard abbreviation: FCNC (Flavor

Changing Neutral Currents)

Such processes are allowed, however, due to quantum corrections

b s

u; ; t

W

�

V

qb

V

�

qs

b s

u; ; t

W

�

(9.50)
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Note that the UV-divergence in these diagrams cancels in the sum of u, c, t quarks since

VubV
∗
us + VcbV

∗
cs + VtbV

∗
ts = 0 ⇐ V V † = 1l (9.51)

This also means that a nonzero answer only appears because of different quark masses.

Such contributions are usually referred to as “penguin diagrams”:

courtesy of A.Lenz (9.52)

• How many physical parameters are contained in the CKM matrix?

◦ A real orthogonal 3× 3 matrix has three parameters (e.g. Euler angles)

◦ A complex unitary 3× 3 matrix has 9 real parameters, but:

— Phases of quark fields are unphysical, one can rotate quark fields in

q̄(i)Vijq
(j) → q̄(i)e−iφiVije

iφjq(j)

without causing observable effects.

◦ We have 6 quark fields, thus 6 arbitrary phases, but if we rotate all 6 quarks in the same way,

there will be no effect on the CKM matrix. Thus in this way one can get rid of 6-1=5 phases.

◦ Thus one phase is physical, the CKM matrix has 4 parameters — 3 angles and one phase.

The presence of a complex parameter in the Lagrangian has very important physics consequences

— a breakdown of the CP symmetry (parity combined with charge conjugation) [more later]. Lect. 20

9.3 Quantization of spontaneously broken gauge theories

Our discussion was so far essentially classical. We used unitary gauge in order to isolate physical

degrees of freedom. It is not clear, however, how/whether this gauge condition is maintained in

perturbation theory, and it is in fact not clear how to formulate perturbation theory in terms of

physical particles. A naive formula for the W± propagator

Wµ(x)Wν(y)
?
=

∫
d4k

(2π)4
e−ik(x−y) gµν

k2 −m2
W

(9.53)

cannot be the full story: This propagator (inspired by usual Feynman gauge) contains contribu-

tion of all four polarizations and for massless gauge bosons we have seen that contributions of

two unphysical polarizations cancel each other, so that only physical transversely polarized states

contribute. For a massive vector particle, the longitudinal polarization is physical, we do not want
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it to cancel, so smth is not OK.

Let us consider an an abelian Higgs model, Sect. 8.1 as an example, where we will slightly change

the notations to be closer to the SM.

• Thus, consider a theory

L = −1

4
F 2
µν +

∣∣DµΦ
∣∣2 − V (Φ) , Dµ = ∂µ + ieAµ (9.54)

where

Φ(x) =
1√
2

(
φ1(x) + iφ2(x)

)
(9.55)

with real φ1,2. Expanding usual Φ(x) → eiα(x)Φ(x) in real and imaginary parts for α(x) → 0 one

obtains that this theory is invariant under infinitesimal abelian trafos

δφ1 = −α(x)φ2 , δφ2 = +α(x)φ1 , δAµ = −1

e
∂µα(x) (9.56)

Assume that V (Φ) has a nontrivial minimum such that φ1 acquires a nonzero VEV, 〈φ1〉 = v, and

in order to construct perturbation theory around this minimum we change variables by a shift:

φ1(x) = v + h(x) , φ2(x) = φ(x) (9.57)

so {φ1, φ2} 7→ {h(x), φ(x)}. Then h(x) is our “Higgs” and φ is the Goldstone boson. The La-

grangian becomes in these variables

L = −1

4
F 2
µν +

1

2
(∂µh− eAµφ)2 +

1

2
(∂µφ+ eAµ(v + h))2 − V (φ, h) (9.58)

This Lagrangian is still invariant under local symmetry trafos

δh = −α(x)φ , δφ = +α(x)(v + h) , δAµ = −1

e
∂µα(x) (9.59)

so that if we want to build a quantum theory as a path integral over h(x), φ(x), Aµ(x) we have to

follow the Faddeev-Popov construction.

• Start with a “naive” path integral

W =

∫
DA(x)Dh(x)Dφ(x) ei

∫
d4xL[A,h,φ] (9.60)

and introduce some gauge-fixing constraint similar as we did for QED (and QCD)

G(A, h, φ) = ω(x) (9.61)

Following the familiar road, insert the Faddeev -Popov “1” in the path integral and use gauge

invariance to separate an overall integral over the gauge group. Obtain

W =
�
��
�
��
�(∫

Dα(x)

)∫
DA(x)Dh(x)Dφ(x) ei

∫
d4xL[A,h,φ]δ(G(A, h, φ)− ω(x)) det

(
δG

δα

)
(9.62)
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Next (path-)integrate over ω(x) with a Gaussian weight to get rid of the δ(G(A, h, φ) − ω(x)) at

the cost of having an additional (gauge-fixing) term in the Lagrangian:

L(A, h, φ) 7→ L[A, h, φ]− 1

2
(G)2 (9.63)

G is, in principle, an arbitrary linear operator, but a suitable choice brings advantages. Let

G =
1√
ξ

(
∂µA

µ − ξevφ
)

Rξ gauge (9.64)

Then in the Lagrangian we get

1

2
G2 =

1

2ξ

(
∂µA

µ − ξevφ
)2

=
1

2ξ
(∂µA

µ)2︸ ︷︷ ︸
(1)

−evφ∂µAµ︸ ︷︷ ︸
(2)

+
ξ

2
e2v2φ2︸ ︷︷ ︸
(3)

(9.65)

(1): The usual gauge fixing term for Aµ
(2): Cancels the term ∼ ∂µφAµ from the expansion of . . . 1

2(∂µφ+ eAµ(v + h))2 . . . in (9.58).

(3): Produces a gauge-dependent mass term for the Golstone boson

m2
φ = ξe2v2 ≡ ξm2

A m2
A = (ev)2 (9.66)

Collecting all quadratic terms in the gauge-fixed Lagrangian:

L = −1

2
Aµ

(
− gµν∂2 +

(
1− 1

ξ

)
∂µ∂ν −m2

Ag
µν
)
Aν +

1

2
(∂µh)2 − 1

2
m2
hh

2 +
1

2
(∂µφ)2 − ξ

2
m2
Aφ

2

+ interactions (9.67)

[The mass term for h comes from V (φ)].

• We still have the determinant of the gauge variation of G which can be computed using (9.59):

δG

δα
=

1√
ξ

δ

δα

{
∂µ

[
Aµ − 1

e
∂µα

]
− ξev

[
φ+ (v + h)α

]}
=

1√
ξ

[
− 1

e
∂2 − ξev(v + h)

]
=

1√
ξe

[
− ∂2 − ξm2

A

(
1 +

h

v

)]
(9.68)

The determinant of this operator can be computed as a path integral over Faddeev-Popov ghost

fields which add an extra term to the Lagrangian

Lghost = c̄(x)
[
− ∂2 − ξm2

A

(
1 +

h

v

)]
c(x) (9.69)

Note that the ghosts do not couple to the gauge field (because we have an abelian theory) but they

couple to the higgs and cannot be ignored.

• From the collection of all quadratic terms in the Lagrangian we can find the propagators. E.g.

for the gauge field

−1

2
Aµ

(
− gµν∂2 +

(
1− 1

ξ

)
∂µ∂ν −m2

Ag
µν
)
Aν (9.70)
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goes over in momentum space to

gµνk2 −
(

1− 1

ξ

)
kµkν −m2

Ag
µν =

(
gµν − kµkν

k2

)
(k2 −m2

A) +

(
kµkν

k2

)
1

ξ
(k2 − ξm2

A) (9.71)

and inverting this matrix one obtains the propagator

Aµ(x)Aν(y) =

∫
d4k

(2π)4i
e−ik(x−y) 1

k2 −m2
A

(
gµν − kµkν

k2 − ξm2
A

(1− ξ)
)

(9.72)

Note that the transverse component of A indeed acquires the mass mA, and the higgs field indeed

acquires the mass mh (easy to see from L), whereas unphysical components of A, the Goldstone

boson and the ghost all acquire the same gauge-dependent mass
√
ξmA.

Here is the full list:

Aµ : �

�

−i
k2 −m2

A

(
gµν − kµkν

k2 − ξm2
A

(1− ξ)
)

h :
i

k2 −m2
h

φ :
i

k2 − ξm2
A

c :
i

k2 − ξm2
A

(9.73)

The dependence on gauge parameter seems to be rather involved, let us check that this dependence

indeed cancels on a simple example. [taken from Peskin&Schröder]

• To this end, let us add fermions to our model, in a way that resembles the SM:

L = ψ̄L(i /D)ψL + ψ̄R(i/∂)ψR − λf
(
ψ̄LΦψR + ψ̄RΦ∗ψL

)
(9.74)

with Dµ = ∂µ + ieAµ as usual. Inserting in the last term

Φ =
1√
2

(
v + h(x) + iφ(x)

)
(9.75)

get

−
λf√

2

[
v
(
ψ̄LψR + ψ̄RψL

)(
1 +

h

v

)
+ iφ

(
ψ̄LψR − ψ̄RψL

)]
=−

λf√
2

[
v ψ̄
(1 + γ5

2
+

1− γ5

2

)
ψ
(

1 +
h

v

)
+ iφψ̄

(1 + γ5

2
− 1− γ5

2

)
ψ

]
=−

λf√
2

[
v ψ̄ ψ

(
1 +

h

v

)
+ iφψ̄γ5ψ

]
= −mf ψ̄ ψ

(
1 +

h

v

)
−
iλf√

2
φ ψ̄γ5ψ (9.76)

Thus the fermion receives a mass as intended:

mf = λf
v√
2

(9.77)
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and it interacts with the higgs and with the Goldstone boson.

[This theory is actually not good as it suffers from an axial anomaly, but we will not go that far]

• Let us calculate the fermion-fermion scattering cross section in this model to lowest order:

f(p) + f(k) → f(p′) + f(k′) (9.78)

We will have three Feynman diagrams — D1,D2,D3 —(the ghost does not contribute at leading

order)

k k

0

p

�

p

0

k k

0

p

h

p

0

k k

0

p

A

p

0

(9.79)

(D3): Since higgs propagator does not depend on ξ, D3 is not involved.

(D2): Goldstone boson:

iMφ =

(
λf√

2

)2

ū(p′)γ5u(p)
i

q2 − ξm2
A

ū(k′)γ5u(k) (9.80)

(D1): Gauge boson:

iMA = (−ie)2

(
ū(p′)γµ

1− γ5

2
u(p)

)
−i

q2 −m2
A

(
gµν − qµqν

q2 − ξm2
A

(1− ξ)
)(

ū(k′)γν
1− γ5

2
u(k)

)
(9.81)

To see cancellation of the gauge dependence, rewrite

−i
q2 −m2

A

(
gµν − qµqν

q2 − ξm2
A

(1− ξ)
)

=
−i

q2 −m2
A

(
gµν−q

µqν

m2
A

+
qµqν

m2
A

− qµqν

q2 − ξm2
A

(1− ξ)
)

=
−i

q2 −m2
A

(
gµν − qµqν

m2
A

)
+

−i
q2 − ξm2

A

(
qµqν

m2
A

)
(9.82)

The first term does not depend on ξ. In the second term the momenta qµqµ will be multiplying

spinor products:

qµū(p′)γµ
1− γ5

2
u(p) = (p− p′)µū(p′)γµ

1− γ5

2
u(p) (/p−m)u(p) = 0

=
1

2
ū(p′)

[
(/p− /p′)︸ ︷︷ ︸

(/p−mf )−( /p′−mf )→0

−(/p− /p′)γ5

]
u(p)

=
1

2
ū(p′)

[
/p′γ5 + γ5/p

]
u(p) = mf v̄(p′)γ5u(p) ,

qν ū(k′)γν
1− γ5

2
u(k) = −(k − k′)µū(k′)γν

1− γ5

2
u(k) = −mf ū(k′)γ5u(k) (9.83)
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Then

iMA = (−ie)2

(
ū(p′)γµ

1− γ5

2
u(p)

)
−i

q2 −m2
A

(
gµν − qµqν

m2
A

)(
ū(k′)γν

1− γ5

2
u(k)

)

+ (−ie)2

(
ū(p′)γµ

1− γ5

2
u(p)

)
−i

q2 − ξm2
A

(
qµqν

m2
A

)(
ū(k′)γν

1− γ5

2
u(k)

)

= (−ie)2

(
ū(p′)γµ

1− γ5

2
u(p)

)
−i

q2 −m2
A

(
gµν − qµqν

m2
A

)(
ū(k′)γν

1− γ5

2
u(k)

)
+ (−ie)2(−m2

f )
1

m2
A

(
ū(p′)γ5u(p)

) −i
q2 − ξm2

A

(
ū(k′)γ5u(k)

)
(9.84)

and using mf = λfv/
√

2, mA = ev

(−ie)2(−m2
f )

1

m2
A

=

(
λf√

2

)2

(9.85)

so that the expression in the second line exactly cancels the Goldstone boson contribution in (9.80).

Thus the dependence on gauge parameter disappears, as it should.

• Note that the final result for the gauge-invariant sum of gauge-boson and Goldstone-boson con-

tributions is just as if we would forget Goldstone altogether and calculate the gauge boson diagram

using the propagator

Aµ(x)Aν(y) =

∫
d4k

(2π)4
e−ik(x−y) −i

k2 −m2
A

(
gµν − kµkν

m2
A

)
(9.86)

The tensor structure is the polarization sum. In the rest frame of the gauge boson this becomes

a projection on the space-like directions, these are precisely the three possible polarizations of a

massive vector particle: ∑
eµqµ=0

e(λ)
µ e(λ)∗

ν =

(
−gµν +

qµqν
m2
A

)
(9.87)

Thus the role of the Goldstone boson contribution is to cancel the contribution of the fourth,

unphysical, polarization.

• Perturbation theory looks very different for different values of ξ:

◦ Landau (Lorentz) gauge ξ = 0:

�

� =
−i

k2 −m2
A

(
gµν − kµkν

k2

)
=

i

k2
(9.88)

◦ Feynman–’t Hooft gauge ξ = 1:

�

� =
−igµν

k2 −m2
A

=
i

k2 −m2
A

(9.89)
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◦ Unitary gauge ξ →∞:

�

� =
−i

k2 −m2
A

(
gµν − kµkν

m2
A

)
= 0 (9.90)

(only physical degrees of freedom remain)

• Non-abelian theories with spontaneous symmetry breaking — similar but much more cumber-

some. A complete set of Feynman rules for the SM can be found e.g. in: J. C. Romao and J. P. Silva,

Int. J. Mod. Phys. A 27 (2012), 1230025.
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Lect. 21

10 The Standard Model: Phenomenology

10.1 W , Z and Higgs

follows Harlander’s 2008 Maria Lach lectures

• SM Couplings to leptons:

LL =

(
νL
eL

)
, νR eR (10.1)

(10.2)

Here and below

sW ≡ sin θW cW ≡ cos θW e =
√

4παQED > 0 (10.3)

• SM Couplings to quarks:

QL =

(
uL
dL

)
, uR dR (10.4)

— the same with different hypercharges:

leptons: Y L
L = −1 Y ν

R = 0 Y e
R = −2

quarks: Y Q
L =

1

3
Y u
R =

4

3
Y d
R = −2

3

Q=I3+Y
2⇒ Qu =

2

3
Qd = −1

3
(10.5)
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[I3 = +1
2 for upper components of the SU(2) doublets and I3 = −1

2 for lower components]

• Electric charge is known very precisely:

1

α
= 137.035999084(21) value from PDT 2020 (10.6)

but how can one determine the Weinberg’s mixing angle and also W , Z masses?

• Z-boson contribution is seen very clearly in the total cross section of electron-positron annihilation

e+ + e− → hadrons
; Z

e

�

e

+

q

�q

(10.7)

LEP at CERN, 1989-2000:

(10.8)

From the position of the peak (now more methods)

mZ = 91.1876(21)GeV/c2 value from PDT 2020 (10.9)

• Weinberg’s mixing angle

The classical method: Forward-Backward (FB) asymmetry in fermion pair production in e+e−

annihilation.

; Z

e

�

e

+

f

�

f

dσ(s)

d cos θ
= σ(s)

[
3

8
(1 + cos2 θ) +AfFB(s) cos θ

]
(10.10)
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At s = m2
Z (at the Z-boson peak) at tree level in SM

AfFB =
3

4
AeAf , Af ≡ 2

gfV g
f
A

(gfV )2 + (gfA)2
(10.11)

where gfA,V are defined in (10.2).

gfV

gfA
= 1− 4|Qf | sin2 θW ⇒ sin2 θW ' 0.23 (10.12)

With quantum corrections, the analysis becomes more complicated. By definition

sin2 θW
!

= 1−
m2
W

m2
Z

(10.13)

but m2
W and m2

Z are renormalized slightly differently, so sin2 θW is also affected.

One has to compare

t

Z Z

t

vs.

t

W W

b

∆ρ ∝ m2
t (10.14)

and also

h

Z Z

Z

vs.

h

W W

W

∆ρ ∝ lnm2
h (10.15)

Difference in self-energies: ∆ρ — “ρ-parameter”.

Then

sin2 θW
!

= 1−
m2
W

m2
Z

=
g′2

g2 + g′2

(
1−

c2
W

s2
W

∆ρ

)
(10.16)

Similar contributions one has to take into account in the amplitude

; Z

e

�

e

+

f

�

f

; Z

e

�

e

+

f

�

f

∆A ∝ lnm2
h or ∝ m2

t

(10.17)

and also take into account interference of γ and Z (important off-peak). From the fit to the energy
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dependence

one obtained (LEP)

sin2 θeff
W = 0.23153± 0.00016 ← defined through tree relation to AFB (10.18)

In more modern studies one usually prefers to give the value referring of MS renormalization scheme

at the scale µ = mZ :

sin2 θW = 0.23122(4) PDT 2020 (10.19)

• Note that quantum corrections to FB asymmetry turn out to be ∝ m2
t or ∝ lnm2

h, so that

they depend strongly on the top quark mass and only weakly on the higgs mass. This feature is

general. As the result, top quark mass mt ∼ 175 GeV was known (from self-consistency of different

observables) long before its discovery, but for higgs mass there were only estimates, e.g.,
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• Muon decay

�

�

�

W

e

��

e

�

e

��

e

�

�

τ−1
µ =

G2
Fm

5
µ

192π3

(
1− 8m2

e

m2
µ

)
⇒ GF = 1.1663787(6)× 10−5 GeV−2 PDT 2020 (10.20)

Comparing to the calculation in SM

1

m2
W − p2

7→ 1

m2
W

⇒ GF =
π√

2m2
W

α

sin2 θW
⇐ e2 = 4πα = g2 sin2 θW (10.21)

The latest value (global fit for many measurements)

mW = 80.379(12) GeV PDT 2020 (10.22)

• Also

mW =
1

2
gv

⇒
GF =

1

4
√

2m2
W

4πα

sin2 θW
=

1

4
√

2m2
W

g2 sin2 θW

sin2 θW
=

1√
2v2

⇒
v ' 246.22 GeV (10.23)

• Z-width and the number of neutrinos

Z-boson is not a stable particle. The height of the peak in the e+e− → hadrons is determined by

the sum of the decay rates in different channels. Close to the peak

; Z

e

�

e

+

f

�

f

σ(s) =
12π

m2
Z

sΓee Γff
(s−mZ)2 + s2Γ2

Z/m
2
Z

(10.24)

(here only Z-boson contribution, no photon), where ΓZ is the total decay rate

ΓZ = 3Γ``︸︷︷︸
leptons

+ Γhad︸︷︷︸
quarks

+ Γinv︸︷︷︸
neutrinos

(10.25)
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Neutrinos cannot be detected but Γinv is proportional to their number. One observes

with the fit on the number of neutrinos giving

Nν = 2.9840± 0.0082 (10.26)

Thus there exist three lepton families and for self-consistence of the SM also three quark families.

There is no room left for another, fourth, family!

• Higgs particle

Higgs particle is very elusive and in order to find it one had build a new accelerator (LHC) and

look very carefully at all possibilities Higgs could be produced, and all possible decay channels.

— Higgs production at LHC: pp→ h+X



10 THE STANDARD MODEL: PHENOMENOLOGY 123

— Higgs decays:

— Higgs discovery 2012 and eight years after . . .
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— Higgs mass summary, PDT 2019

mh = 125.10± 0.14 GeV (10.27)

What does it tell us? Is mh too large or too small or just right?

Remind scalar potential

V (φ) = −µ2φ†φ+ λ(φ†φ)2 ⇒ µ2h2 + λvh3 +
1

4
λh4 ≡ 1

2
m2
hh

2 +

√
λ

2
mhh

3 +
1

4
λh4 (10.28)

v =

(
µ2

λ

)1/2

mh =
√

2µ2 =

√
λ

2
v (10.29)

Taking into account quantum corrections λ → λ(µ) (running coupling) [coupling to top quark is

also important] and many things can happen:

Depending on the initial value at low scale (experiment), the coupling can

— rise slowly

— become infinite at some point (“zero charge” problem)

— become negative (vacuum stability problem)
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If a problem occurs, it signals that the SM must be modified and replaced by a new more funda-

mental theory at higher energies. What we know now:

exp.

so that it seems that SM could survive as a self-consistent QFT to very large energies.

[This does not mean that it necessarily remains the correct theory].

• SM predicts that higgs couplings to fermions are proportional to the mass:

— OK for now, but low accuracy Lect. 22

10.2 CKM mixing matrix

• Standard parametrization

Vij =

Vud Vus VubVcd Vcs Vcb
Vtd Vts Vtb

 =

1 0 0

0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13

 c12 s12 0

−s12 c12 0

0 0 1

 (10.30)
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where

cij = cos θij , sij = sin θij , i, j = 1, 2, 3 (families) (10.31)

— three Euler angles and one phase.

◦ The phase is attributed to mixing between 1-st and 3-rd generations (convention).

◦ Experimentally (we do not know why)

s13 � s23 � s12 � 1 (10.32)

• Quarks from different families get mixed by V , antiquarks by V †. If V 6= V † (complexity)

antiquarks are different from quarks with respect to CP and T trafos.

How these transformations operate:

d

L

i

u

L

j

V

ji

CP

�

d

R

i

�u

R

j

V

�

ji

T

u

L

j

d

L

i

V

�

ji

CPT

�u

R

j

�

d

R

i

V

ji

exat

• Unitarity triangle

V V † = 1l ⇒ six ”triangle” relations

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

. . . (10.33)

— a sum of three complex numbers equals zero:

V

td

V

�

tb

V

d

V

�

b

V

ud

V

�

ub

area =
1

2
J

Jarlskog invariant: J = Im
(
VijVklV

∗
ilV
∗
kj

)
(10.34)

Rescaled unitarity triangle:

VudV
∗
ub

VcdV
∗
cb

+ 1 +
VtdV

∗
tb

VcdV
∗
cb

= 0 (10.35)
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V

td

V

�

tb

V

d

V

�

b

V

ud

V

�

ub

V

d

V

�

b

Im

Re1

�

�

�

�



(10.36)

Determination and over-determination of the CKM parameters — a huge experiment/theory effort

in the past 30 years; a Nobel prize for Kobayashi & Maskawa 2008

Prize motivation: “for the discovery of the origin of the broken symmetry which predicts the

existence of at least three families of quarks in nature.”

A lion share of the info about CKM comes from weak decays of B-mesons:

• LHCB experiment at CERN: ∼ 1011 detected bb̄ pairs

pp→ b+ b̄+X

• dedicated “B-factories”: BABAR (SLAC) and BELLE (KEK)

e+e− → Υ (= bb̄ resonances)→ Bq + B̄q Bq = b̄q , q = u, d, s

∼ 109 detected bb̄ pairs at BELLE

Basic idea: confront results of different measurements to confirm/contradict the CKM mixing idea,

e.g.

— this was the situation about 20 years ago. . .
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. . . and this is how it looks today:

(CKM fitter, May 2020)

Some highlights:

• Sides of the triangle (magnitude of CKM matrix elements)

(a) |Vud| = 0.97425(22) ⇐ nuclear beta-decays

(b) |Vus| = 0.2252(9) ⇐ K0
L → πeν̄e

K �

�

d

s u

W

��

e

e

∝ |Vus|f+(0)

f+(0) = 0.9644(49)[lattice QCD]

(c) |Vcd| = 0.229(6)(24) ⇐ D → K`ν̄`, π`ν̄` (10.37)
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For the mixing angles involving b-quark there is some discrepancy between different methods:

◦ B → Xu`ν̄` ”inclusive”, sum over all final states

◦ B → π`ν̄` ”exclusive”, a particular final state (10.38)

[theory treatment is very different]

(d) |Vcb|incl = (42.2± 0.8)× 10−3 |Vcb|excl = (38.5± 0.9)× 10−3

(e) |Vub|incl = (4.25± 0.12 +0.15
−0.14 ± 0.23)× 103 |Vub|excl = (3.70± 0.10± 0.12)× 10−3 (10.39)

This discrepancy, most likely, is not a defect of the CKM construction but rather an indication

that we do not understand effects of strong interactions in B-decays as well as we would like to.

• CKM phases — from��CP observables

• Discovery of CP-violation (1967): K0 ↔ K̄0-oscillations

Strong interaction eigenstates:

K0 = s̄ d (S = +1) K̄0 = d̄ s (S = −1) (10.40)

CP trafo:

CP |K0〉 = −|K̄0〉 CP |K̄0〉 = −|K0〉 (10.41)

Therefore, CP-eigenstates:

CP = +1 : |K1〉 =
1√
2

(
|K0〉 − |K̄0〉

)
CP = −1 : |K2〉 =

1√
2

(
|K0〉+ |K̄0〉

)
(10.42)

If CP is conserved, K0
1 can decay in two pions, K0

1 → ππ (CP = +1) but K0
2 can only decay in

three pions, K0
2 → πππ (CP = −1), which is much slower because of a small phase space. Hence

different life times:

”long living” K2 : τL = (5.116± 0.020)× 10−8s

”short living” K1 : τS = (8.953± 0.005)× 10−11s (10.43)

Experimentally (1967), the decay K2 → ππ was, however, observed, with a small branching fraction

Br∼ 10−3. This proves that CP symmetry is broken and the “true” physical eigenstates of neutral

kaons include a (small) admixture of the state with opposite CP:

|K0
S〉 =

1√
1 + |ε|2

(
|K1〉+ ε|K2〉

)
|K0

L〉 =
1√

1 + |ε|2
(
|K2〉+ ε|K1〉

)
(10.44)

with ε� 1. The value of ε is a measure of CP-violation (one of many). The experimental value is

|εK | = (2.23± 0.01)× 10−3 (10.45)
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• Analogous effect was found in 2000 in the B0
d ↔ B̄0

d system.

• What is the origin of B0
d ↔ B̄0

d in the SM?

—second-order effect in weak interaction:

b

d

d

b

W WB

0

B

0

b

d

d

bW

u; ; t

W

B

0

B

0

u; ; t

u; ; t

(10.46)

The transition can be described by an effective local operator insertion

〈B0
d|HW |B0

d〉 6= 0 (10.47)

Schrödinger Eq. for unstable particle (at rest):

i
d

dt
|Ψ〉 =

(
m− i

2
Γ
)
|Ψ〉 ⇒ |Ψ(t)〉 = eimte−

1
2

Γt|Ψ(t = 0)〉 (10.48)

Generalization for a two-component system:

i
d

dt

(
B0

B̄0

)
=
(
M − i

2
Γ
)(B0

B̄0

)
M = M †, Γ = Γ†,

=

(
H11 H21

H12 H22

)(
B0

B̄0

)
=

(
m11 − i

2Γ11 m12 − i
2Γ12

m21 − i
2Γ21 m22 − i

2Γ22

)(
B0

B̄0

)
(10.49)

Hermiticity:

M = M †, Γ = Γ† ⇒ m21 = m∗12 , Γ21 = Γ∗12 (10.50)

CPT symmetry:

m11 = m22 ≡ m, Γ22 = Γ11 ≡ Γ (10.51)

CP-breaking allows for

��CP ⇒ m21 = m∗12 6= m12 , Γ21 = Γ∗12 6= Γ12 (10.52)

Diagonalizing this matrix one obtains physical mass eigenstates (“light” and “heavy”) with the

corresponding decay widths

|BL〉 = p|B0〉+ q|B̄0〉 , with mL, ΓL

|BH〉 = p|B0〉 − q|B̄0〉 , with mH , ΓJ

p, q ∈ C , |p|2 + |q|2 = 1 (10.53)
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During the time evolution, therefore, B0 slowly goes over in B̄0 and back. The transition probability

as a function of time:

PB0→B̄0(t) = |〈B̄0(t)|B0(0)〉|2 =
1

4

∣∣∣∣qp
∣∣∣∣2 ∣∣∣e−imH te− 1

2
ΓH t − e−imLte−

1
2

ΓLt
∣∣∣2

=
1

4

∣∣∣∣qp
∣∣∣∣2 [e−ΓLt + e−ΓH t − 2e−

1
2

(ΓH+ΓL)t cos(∆mt)
]

(10.54)

with

∆m = mH −mL = 0.502(7) ps−1 (∼ 3.2 · 10−4 eV (10.55)

The standard model prediction (from box diagrams above) is∣∣∣∣qp
∣∣∣∣− 1 ' 4π

m2
c

m2
t

sinβ (∼ 5 · 10−4) (10.56)

from: P. Uwer, “Quark mixing and CKM matrix”

• Studies of��CP are very broad and go in three main directions:

1. ��CP in mixing of neutral mesons

P (B0 → B̄0)
��CP
6= P (B̄0 → B0) ⇒

∣∣∣∣qp
∣∣∣∣ 6= 1 (10.57)
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2. “Direct”��CP in meson decays:

P (B̄0 → given final state) 6= P (B0 → given final state) (10.58)

Example: BABAR 2004

ACP =
N(B0 → K+π−)−N(B̄0 → K−π+)

N(B0 → K+π−) +N(B̄0 → K−π+)
(10.59)

This asymmetry is generated by “penguin” diagrams like

B

0

Wb s

d d

u

u

K

�

�

+

ACP ∼ sin(φ1 − φ2)︸ ︷︷ ︸
weak phases

sin(δ1 − δ2)︸ ︷︷ ︸
strong phases

(10.60)

3. Interference between mixing and decay

m

i

x

i

n

g

B

0

B

0

f

A

f

= jA

f

je

i�

e

iÆ

A

f

=

j

A

f

j

e

�

i

�

e

i

Æ f : final state with fixed CP (10.61)

 sin 2β from B0 → J/ΨKS (“golden mode”)

sin 2α from B0 → π+π− etc.
Lect. 23

11 Some open issues

The SM works very well. Why look beyond?

• Neutrino mixing/masses

• Small deviations are (maybe) appearing. . .

• Theory issues (fine tuning. . . )

• “Big” questions — baryon asymmetry, dark matter, etc (⇐ Cosmology)

I will give a quick tour.
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11.1 Neutrino mixing

• A major source of neutrinos on Earth is the Sun. Neutrinos are produced in the Sun via a

complicated chain of reactions, roughly

4p −→ 4He + 2e+ + 2νe (11.1)

The fundamental process is an inverse β-decay: p→ ne+νe or, on the quark level, u→ de+νe. The

actual production process is shown on the following diagram:

This process is complicated but well understood. The amount of neutrinos that the Sun sends to

us and their energy spectrum are known rather well. The problem is (was) that the amount of

neutrinos detected on the Earth turns out to be much less than expected. Thus, either smth is

happening with neutrinos on the way to us, or our sun models are badly wrong. . .

This discrepancy has become known as the solar neutrino problem.

• The produced neutrino νe is the weak interaction eigenstate but not necessarily a mass eigenstate

(B. Pontekorvo, 1957) if there some mixing in neutrino sector between νe, νµ, ντ of the type that

we have seen in the quark sector. Denote neutrino mass eigenstates by ν1, ν2, ν3 and assume that

(for two flavors as example) (
νe
νµ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ν1

ν2

)
(11.2)

The electron neutrino produced in the sun is a linear combination of the mass eigenstates

νe = cosθ ν1 + sin θ ν2 (11.3)
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On the way to the Earth the wave functions describing mass eigenstates acquire a phase

ν1(t) = ν1(0)eiE1t ν2(t) = ν2(0)eiE2t

E1 =
√
m2

1 + |~p|2 E2 =
√
m2

2 + |~p|2 (11.4)

and if E1 6= E2 (m1 6= m2) the content of νe in terms of ν1 and ν2 will change with time:

νe(t) = cosθ ν1(t) + sin θ ν2(t)

= cosθ ν1(0)eiE1t + sin θ ν2(0)eiE2t (11.5)

This can be expressed in terms of νe and νµ using(
ν1

ν2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
νe
νµ

)
(11.6)

so that

νe(t) = cos θ
(

cos θ νe(0)− sin θ νµ(0)
)
eiE1t + sin θ

(
sin θ νe(0) + cos θ νµ(0)

)
eiE2t

=
(

cos2 θ eiE1t + sin2 θeiE2t
)
νe(0) + cos θ sin θ

(
eiE2t − eiE1t

)
νµ(0) (11.7)

Thus (Pontecorvo):

the electron neutrino can oscillate in a muon neutrino if (1) m1 6= m2 and (2) θ 6= 0.

The probability for the change of flavor a to flavor b is then

P (νa → νb) = |〈νb(t)|νa(0)〉|2

= | cos θ sin θ
(
eiE2t − eiE1t

)
|2 =

(1

2
sin 2θ

)2
2
[
1− cos ∆Et

]
(11.8)

Here

t ' L

c
(distance from the sun)

∆E =
√
m2

1 + |~p|2 −
√
m2

2 + |~p|2 ' 1

2E
(m2

1 −m2
2) (11.9)

The energy of the neutrinos depends on the production process but generally is in the MeV range:
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• Detection on the Earth:

Neutrinos can only be detected via weak interaction, and only process involving electrons but not

muons can only detect electron neutrinos. The existing experiments use

CI37 + νe → Ar37 + e− Davies, Homestoke

n+ νe → p+ e−

Ga71 + νe → Ge71 + e− Gallex, Sage, GNO

n+ νe → p+ e− (11.10)

and all find much less νe compared to what us produced in the sun. In addition, the SNO experiment

had different detection channels sensitive to all three neutrino flavors.

• Other neutrino sources

◦ Atmospheric neutrinos from collisions of cosmic ray particles with the atmosphere

◦ Accelerator neutrinos, e.g., from pp→ π +X → µ+ . . .

◦ Reactor anti-neutrinos (from specially tuned nuclear reactions)

• Our current knowledge about neutrino mixing (PDT 2020)

� Atmospheric νµ and ν̄µ disappear most likely converting to ντ and ν̄τ . The results show an

energy and distance dependence perfectly described by mass-induced oscillations.

� Accelerator νµ and ν̄µ disappear over distances of ∼ 200 to 800 km. The energy spectrum of

the results show a clear oscillatory behavior also in accordance with mass-induced oscillations

with wavelength in agreement with the effect observed in atmospheric neutrinos.

� Accelerator νµ and ν̄µ appear as νe and ν̄e at distances ∼ 200 to 800 km.

� Solar νe convert to νµ and/or ντ . The observed energy dependence of the effect is well described

by massive neutrino conversion in the Sun matter according to the MSW effect.

� Reactor ν̄e disappear over distances of ∼ 200 km and ∼ 1.5 km with different probabilities.

The observed energy spectra show two different mass-induced oscillation wavelengths: at short

distances in agreement with the one observed in accelerator νµ disappearance, and a long

distance compatible with the required parameters for MSW conversion in the Sun.

MSW: Mihheev-Smirnov-Wolfenstein Effect —neutrino propagation in the sun taking into

account the matter density

. . . and here are the current numbers: (PDT 2020)

∆m2
21 = (7.39+0.21

−0.20) · 10−5 eV2

∆m2
32 = (2.449+0.032

−0.030) · 10−3 eV2

θ12 = (33.82+0.78
−0.76)◦

θ23 = (48.3+1.2
−1.9)◦

θ13 = (8.61+0.13
−0.13)◦ (11.11)
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• Constraint on neutrino masses (from kinematics of weak decays)

mνe < 1.1 eV 3H→ 3He + e− + ν̄e (11.12)

• Lepton unitarity triangle (assuming three families) ‡

 CP-violation likely also in leptonic sector

• Could neutrinos be Mayorana fermions?

Dirac fermion in Weil rep:

Ψ =

(
ψL
ψR

)
(11.13)

ψL and ψR have different properties under Lorentz trafos. However, one can show that σ2ψ∗R
transform in the same way as ψL so that instead of defining a Dirac bispinor as a pair of left-

handed and right-handed fields it is possible to introduce two left-handed fields instead:

Ψ =

(
ψ

(1)
L

σ2ψ
(2)∗
L

)
(11.14)

The point is that we actually do not need two different fields and can choose

ψ1
L = ψ2

L = χ (11.15)

reducing the number of degrees of freedom. The Dirac mass term then becomes

mΨ̄Ψ = m(ψ†RψL + ψ†LψR) = −m(χTσ2χ+ h.c.) (11.16)

— a Mayorana mass term — and one does not need right-handed particles at all!

If neutrino is a Mayorana particle, neutrino and antineutrino are described by the same field and

therefore 〈ν(x)ν(0)〉 6= 0.

‡a major difference to CKM is that one can have three physical phases, not just one, if neutrinos are Mayorana

particles (see below).
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This can be decided by observation (Mayorana) or non-observation (Dirac) of the neutrinoless dou-

ble beta decay:

— very hard to measure. . .

11.2 Anomalous magnetic moment of the muon

• Energy shift of a charged particle in magnetic field

E = −~µ · ~B (11.17)

Classically

~µ =
q

2mc
~L (11.18)

In QM

~µ = g
q

2mc
~S g : gyromagnetic ratio (11.19)

• For Dirac fermions

g = 2 (11.20)

I
Dirac eq. in external field

(iγµDµ −m)Ψ = 0 Dµ = ∂µ − ieAµ ~π = ~p− e ~A (11.21)

To study the nonrelativistic limit |~p| � m and weak fields eA0 � m it is convenient to use Dirac

rep. for γ-matrices. In this case the lower two components in the bispinor are v/c suppressed

compared to the upper two ones. To see this, make an ansatz

Ψ(x) =

(
χ(x) e−ipx

φ(x) e−ipx

)
~γ =

(
0 ~σ

−~σ 0

)
(11.22)

and inserting this into the Dirac Eq.

(1) i
∂

∂t
χ = ~σ · ~π φ+ eA0χ

(2) i
∂

∂t
φ = ~σ · ~π χ+ (eA0 − 2m)φ (11.23)
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From (2) get φ = (~σ · ~π/2m)χ and inserting in (1):

i
∂

∂t
χ =

[
(~σ · ~π)2

2m
+ eA0

]
χ (11.24)

Since

(~σ · ~π)2 = π2 + e~σ · ~B (11.25)

get

i
∂

∂t
χ =

[
(~p− e ~A)2

2m
+

e

2m
~σ · ~B + eA0

]
χ (11.26)

and finally rewrite

e

2m
~σ · ~B = g

e

2m

~σ

2
· ~B = g

e

2m
~S · ~B with g = 2 (11.27)

J
• Deviation from g = 2 are due to QED corrections:

ae =
1

2
(ge − 2) =

α

2π︸︷︷︸
J.Schwinger

−0.328 . . .
(α
π

)2
+ 1.182 . . .

(α
π

)3
− 1.9144 . . .

(α
π

)4
Kinoshita 2007

(11.28)

but not only, as other particles (e.g. quarks) can contribute through loop diagrams:

In addition there are contributions due to weak interactions:

Z



h

 

WW

�

Luckily, all these non-QED corrections are extremely small so that measurements of (ge − 2) allow

one for a very precise determination of electron charge (fine structure constant) that I quoted

already:

1

α
= 137.035999084(21) value from PDT 2020 (11.29)

This value is (was until very recently . . . ) in perfect agreement with other measurements that have

comparable accuracy (current champion: Cesium-133 atoms [Parker et al, 1812.04130]).

• The muon is just a heavier copy of the electron, so that the anomalous magnetic moment of

the muon can be calculated in precisely the same way. A difference of principle is, however, that

contributions of heavy particles (inside loops) are in general proportional to

∝
m2
e,µ

M2
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(can be shown) and going over from an electron to a muon are enhanced by a factor

m2
µ/M

2

m2
e/M

2
=

(
mµ

me

)2

∼ 40000 (11.30)

 weak interaction effects important (calculable)

 sensitive to possible “new physics” particles inside loops

Physicists are, therefore, very much intrigued by the disagreement of the calculations with the

measurements:

(plot taken from PDT 2020) that persists for many years already. The points show some of the

most recent theory calculations, the blue band the recent measurements.

Main theory uncertainty comes from hadronic (quark) contributions inside loops. Improving the

current accuracy is a hot research topic.

• Deviations from the SM at the 3σ level also show up in some rare B meson decays, but they are

not so well established (may disappear with time). Lect. 24

11.3 Theory issues

The SM is a self-consistent QFT, although maybe not as elegant as we would like it to be. If we

assume that SM will be substituted by a more fundamental theory at very small distances, there

are some issues concerning how this transition can look like. I sketch a few of them.

11.3.1 Unification of couplings

The three coupling constants of known interactions — strong, weak and electrodynamics — become

very close in size at energies around 1014 − 1015 GeV, suggesting that at such energies all three

interactions become part of a single theory — “Grand unification”. If the SM survives without

modifications up to such scales, the couplings do not coincide exactly. This inspired speculations

that some new particles should show up at scales around 1000 GeV; their contributions modify the

β-functions that govern scale dependence of the couplings and one can enforce all three to coincide

at one point. The best studied example - the Minimum Supersymmetric extension of the Standard

Model (MSSM):
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This looks impressive, but, unfortunately, MSSM is practically excluded by the new LHC data —

the predicted particles most likely do not exist. . .

11.3.2 The hierarchy problem

Mass renormalization in a field theory:

mexp = m0︸︷︷︸
divergent

+ δm︸︷︷︸
divergent

(11.31)

Nobody is worried because infinities parametrize our ignorance of the theory at very large momenta.

However, IF we assume that our theory is correct up to the scale Λ, and calculate contributions up

to this scale (i.e., with a rigid cutoff at momenta > Λ)

mexp = m0(Λ)︸ ︷︷ ︸
finite

+ δm(Λ)︸ ︷︷ ︸
finite

(11.32)

we would prefer to have δm . m0. What happens in “real life”?

• Fermions

δmF ' g2

Λ∫
d4k

{k}
k2(k2 −m2

F )
∼ g2mF ln

Λ

mF
(11.33)

Naively one should expect δmF ∼ Λ from power counting, however, the term ∝ k in the

numerator vanishes upon integration if the regulator does not break Lorentz symmetry.

• Gauge bosons

δmG ' g2

Λ∫
d4k
{k k}
k2 k2

∼ g2m2
loop ln

Λ

mL
(11.34)
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(two powers of k in the numerator either from vertices or from fermion propagators)

Naively one would expect δm2
G ∼ Λ2. However, quadratic divergences cancel thanks to gauge

symmetry (Ward identity).

� unbroken −→ complete cancellation, δm2
G = 0 (photon)

� spont. broken −→ logarithmic div. allowed, δm2
G ∼ m2 ln Λ

m (W,Z-bosons)

• Scalars (Higgs in SM)

δmh ' g2

Λ∫
d4k

{k k}
(k2 −m2

t ) (k2 −m2
t )
∼ g2Λ2

δmh ' g2

Λ∫
d4k

{1}
(k2 −m2

h)
∼ g2Λ2 (11.35)

No cancellation of quadratic divergences.

Then for mh ∼ 100 GeV requiring δmh < mh implies Λ < 1000 GeV (roughly).

Another way to state the problem: If we assume that the SM is correct up to scales ∼ 1014 GeV

(unification of couplings), then (using realistic values of the couplings)

spin− 1

2
: mexp︸ ︷︷ ︸

O(100) GeV

= m0︸︷︷︸
O(100) GeV

+ δm︸︷︷︸
O(1) GeV

spin− 0 : mexp︸ ︷︷ ︸
O(100) GeV

= m0︸︷︷︸
O(1033) GeV

+ δm︸︷︷︸
O(1033) GeV

(11.36)

— a fine tuning or naturalness problem.

’t Hooft: existence of light fundamental scalar particles requires additional symmetries

Proposed solutions:

— Supersymmetry

— Extra space-time dimensions, e.g. Randall-Sundrum models

— ‘Conformal SM” — spont. symmetry breaking with m0 = 0 and Coleman-Weinberg potential

Nothing convincing so far. . .

11.4 Baryon asymmetry of the universe

used: V. Rubakov. CERN Yellow Reports: School Proceedings, Vol. 2/2017, CERN-2017-005-SP

• Observe matter but little antimatter in present Universe

• Baryon-to-photon ratio

ηB =
nB
nγ

= 6 · 10−10 (almost constant in time) (11.37)

In early Universe (T > 1012 K = 100 MeV) creation and annihilation of q̄ − q pairs should have

resulted in

nq ' nq̄ ' nγ
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Hence

nq − nq̄
nq + nq̄

∼ 10−9 (11.38)

(In early Universe for 109 antiquarks there had been 109 + 1 quarks. Most of them annihilated

producing photons but a tiny amount of quarks survived.)

• How did it happen and when?

1. The Universe just started this way (unlikely, e.g., contradicts inflation)

2. Occurred around the GUT scale ∼ 1015 GeV

(GUT=Grand Unified Theories usually have baryon number (B) violating interactions; e.g.

proton decay predicted but not observed — one of generic problems of such theories)

3. Occur-ed at the electroweak phase transition. This is the era when Higgs field acquired

nonzero VEV and also other particles become massive.

Sakharov 1967: Three necessary conditions for baryogenesis

1. B-violation (obvious)

2. C and CP violation:

If not, without a preference of matter over antimatter the B-violation will take place at the

same rate in both directions.

3. Thermodynamic non-equilibrium:

CPT guarantees equal masses for baryons and antibaryons; Chemical reactions would drive

the necessary reactions to correct for any developing asymmetry.

[In a stationary system (no time dependence at all), if the baryon number was zero initially,

it will stay zero forever]

Remarkably,

SM has all necessary ingredients!

• Baryon number is violated nonperturbatively

Baryon current:

Bµ
(q) = q̄γµq ≡ {ρ,~j} = { q†q︸︷︷︸

quark number density

, q†γ0~γq} (11.39)

is not conserved because of the anomaly

∂µB
µ =

(
1

3

)
Bq

· 3colors · 3generations ·
g2

32π2
F aµνF̃

a,µν︸ ︷︷ ︸
SU(2) field strength

(11.40)

Similarly for lepton current

∂µL
µ = 3generations ·

g2

32π2
F aµνF̃

a,µν (11.41)
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Anomaly cancellation implies that

∂µ

(
Bµ − Lµ

)
= 0 (11.42)

but B and L are not conserved separately.

If large gauge field fluctuations occur, such that

Q ≡
tfin∫

tinit

dt

∫
d3x

g2

32π2
F aµνF̃

a,µν 6= 0 (11.43)

one obtains§

Bfin −Binit =

tfin∫
tinit

dt

∫
d3x ∂µB

µ =

∫
d3xB0(~x, tfin)−

∫
d3xB0(~x, tinit) = 3Q (11.44)

and similar for three lepton families

Lfin − Linit = 3Q (11.45)

In other words,

B − L conserved

B and L violated (11.46)

• How can B be violated if all terms in the Lagrangian conserve this symmetry?

◦ Consider massless fermions in a background field ~A(~x, t) (A0 = 0, Coulomb gauge) such that

~A(~x, t→ −∞)→ vacuum ~A(~x, t→ +∞)→ vacuum (11.47)

(This could be a quantum fluctuation)

Dirac equation

i
∂

∂t
Ψ = iγ0~γ · (~∂ − ig ~A)Ψ ≡ HDirac(t)Ψ (11.48)

◦ Assume that ~A varies slowly in time; then fermions “sit” on energy levels of the Hamiltonian at

the given time

HDirac(t)Ψn = En(t)Ψn (11.49)

◦ How do the eigenvalues behave in time?

§one can show that Q is integer (winding number = topological charge)
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Dirac picture (Dirac sea) at ~A = 0: (t→ ±∞)

}
←− electrons

←− positron

(11.50)

Note that all eigenvalues come in pairs: +En and −En because of γ5 symmetry of the D. equation:

If Ψn is a solution of HΨn = EnΨn, then Ψ′n = γ5Ψ is a solution of HΨ′n = −EnΨ′n.

Time evolution of levels in special (topologically nontrivial) gauge fields Q 6= 0:

Example: Q = 2

left-handed fermions right-handed fermions.

The number of levels crossing zero equals Q. The motion of levels shown in the left-hand panel

above corresponds to the case in which the initial state of the fermionic system is vacuum (no real

fermions or antifermions) whereas the final state contains Q = 2 real (left-handed) fermions.

Note that left-handed and right-handed levels move in opposite directions. In QCD (QED) left-

handed and right-handed fermions interact with gluons (photons) in the same way. As the result

B = NL +NR is conserved ∂µJ
µ = 0

Q5 = NL −NR is violated ∂µJ
µ5 6= 0 (11.51)

If, however, only left-handed fermions interact (the case in SM for the SU(2) gauge field, then the

number of fermions of a given type is not conserved  baryon number not conserved.

◦ In order that this mechanism works, one needs large gauge field fluctuations with nonzero Q

(topological charge). They are called instantons. However, at zero temperature a probability of

such a quantum fluctuation is suppressed by a factor

e−16π2/g2 ∼ 10−165 (11.52)
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so you should not worry, we are not going to decay any time soon. (Explanation goes beyond these

lectures).

At high temperatures, however, such fields can result from a thermal fluctuation (sphalerons) and

their probability becomes sufficiently large such that B-violation is rapid compared to cosmological

expansion. This happens at temperatures

T > vT ≡ 〈φ〉T︸ ︷︷ ︸
Higgs VEV at temp. T

(11.53)

Thus, excitingly, there is a possibility to generate baryon asymmetry at electroweak epoch TEW ∼
100 GeV. This scenario is known as electroweak baryogenesis.

Unfortunately, this does not seem to work. . .

1. CP-violation too weak

2. Universe expands too slowly — expansion time too large to have considerable deviations from

equilibrium. The only chance: 1-st order phase transition from the unbroken to the broken

phase. [EW symmetry is restored at hight T, 〈φ〉 = 0, just like a superconducting state

becomes normal at high T]

first order second order

— A 1-st order phase transition occurs from a supercooled state via spontaneous creation of

bubbles of a new (broken) phase — a “boiling Universe”, strongly out of equilibrium.

Unfortunately this does not happen in SM (would require higgs mass < 50 GeV).

3. B-violating processes do not switch off fast enough in broken phase  B-asymmetry will be

washed out even if generated.

The (generally accepted) conclusion is that electroweak baryogenesis requires considerable extension

of the SM, and existence of relatively light new scalar particles (a supersymmetric partner of the

top quark, “stop”, would be a good candidate). This looks increasingly unlikely in view of LHC

results (do not see anything of this kind).

• A popular alternative: leptogenesis (Fukugita & Yanagida, 1986)

Basic idea: baryon asymmetry is generated not directly, but first lepton-antilepton asymmetry

occurs and then it is converted to baryon asymmetry via anomaly and sphaleron transitions (as
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explained above).

Typical (original) scenario: assume existence of a (very) heavy right-handed Mayorana neutrino

— Why right-handed: no SM gauge interactions (both U(1) and SU(2))

— Why Mayorana: do not need a left-handed counterpart

— “Seasaw” mechanism to explain very small (usual) neutrino mass pattern

that decays in leptons and a higgs boson. This decay breaks CP so one also gets an additional

source of��CP, which is also welcome.

Typical Lagrangian (ei = e, µ, τ)

L = ĒiLi/∂E
i
L + ēiRi/∂e

i
R + ν̄iRi/∂ν

i
R + fij ē

i
RE

j
LH
† + gij ν̄

i
RE

i
LH −

1

2
Miν

i
Rν

i
R + h.c. (11.54)

Note that the Mayorana mass term explicitly violates the lepton number. The vacuum expectation

value of the Higgs field generates charged lepton Dirac mass m` matrix and Dirac neutrino mass

matrix m
(D)
ν in a usual way. In addition there is a Mayorana mass matrix M that can contain large

numbers, e.g., ∼ 1015 GeV.

The mass matrices m
(D)
ν and M contain altogether 6 physical CP phases, which lead to CP

violating decays and scatterings. Diagonalizing the 6 × 6 neutrino mass matrix one obtains three

heavy and three light neutrino mass eigenstates.

Currently, there exist many concrete models based on these ideas. Lect. 25

12 Supersymmetry

Supersymmetry (SUSY) is a major new idea in comparison to “conventional” symmetries and an

important ingredient in practically all modern approaches to particle physics beyond SM. It also

has applications to condensed matter physics. SUSY has grown up to a very broad field and

a description pretending to be at least half-complete would take several semesters of dedicated

lectures. Here I will give an elementary introduction based on the QM example first discussed by

Witten in 1981. My presentation follows: M. Shifman, “Beginning Supersymmetry”, in: ITEP

Lectures on Particle Physics and Field Theory.

12.1 Supersymmetric Quantum Mechanics

• Consider a one-dimensional quantum system described by the Hamiltonian

H =
1

2

( p2

2m
+W 2(x) + σ3

1√
m

dW

dx

)
(12.1)

Here:

σ3 = third Pauli matrix

W (x) = arbitrary function

• The Hamiltonian looks peculiar; let us show, however, that it actually describes a one-dimensional

motion of an electron in a magnetic field of special type.
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Start with (cf. Sec. 11.2)

H =
1

2m
(p− eA)2 +

e

2m
~σ · ~B

=
1

2m
p2 − ie

2m
~∇ · ~A− e

m
~A · ~p+

e2

2m
~A2 +

e

2m
~σ · ~B (12.2)

Choose

Ax = Az = 0 , Ay =

√
m

e
W (x)︸ ︷︷ ︸

only depends on x

(12.3)

Then

∂xAy ∼ Bz(x) , Bx = Bz = 0 (12.4)

— only z-component of ~B is nonzero, and it only depends on x.

x

y

z

B

z

(x)

It is easy to see that in this way one arrives at the Hamiltonian in (12.1).

• A (nonrelativistic) electron wave function is a two-component spinor

Ψ(x) = ψ1(x)

(
1

0

)
︸︷︷︸
|↑〉

+ψ2(x)

(
0

1

)
︸︷︷︸
|↓〉

(12.5)

• Note that

[H,σ3] = 0 (12.6)

so that spin projection on the z-axis is conserved with time. We have two independent sets of

solutions with “spin-up” and “spin-down”.

In what follows let us give them new names (convention)

| ↑〉 : ”Fermion state”

| ↓〉 : ”Boson state” (12.7)

• The most important special property of the Hamiltonian in Eq. (12.1) is that it can be written

as a square of an operator called the supercharge.
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Supercharges:

Q1
!

=
1

2

(
σ1

p√
m

+ σ2W

)
σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)

Q2
!

=
1

2

(
σ2

p√
m
− σ1W

)
(12.8)

Using these definitions it is easy to show that

◦ Q1 = Q†1 , Q2 = Q†2 , Q2 = −iσ3Q1

◦ H = 2Q2
1 = 2Q2

2 (= 2Q1Q
†
1 = 2Q2Q

†
2)

◦ d

dt
Q1,2 = −i[Q1,2, H] = 0 (conserved charges) (12.9)

We can also summarize these relations as

{Qi, Qj} = δijH i, j = 1, 2

[Qi, H] = 0 (12.10)

so that we have three operators: Q1, Q2 and H, which form the so-called graded algebra (involves

commutators and anticommutators

Q1,2 are called odd elements of the algebra (fermion type)

H is called even element of the algebra (boson type)

Rationale for the names: Easy to check

Qi| ↑〉 ∼ | ↓〉

Qi| ↓〉 ∼ | ↑〉 (12.11)

so that Qi generically convert “fermions” in “bosons” and v.v. (unless they annihilate the state)

• Properties of this system

In what follows for simplicity assume

|W (x)| → ∞ for x→ ±∞ (12.12)

[only discrete energy levels, no continuous spectrum]

1. All energy eigenvalues are non-negative, E ≥ 0

Indeed

∀|a〉 Ea = 〈a|H|a〉 = 2〈a|Q†1Q1|a〉 = 2〈b|b〉 > 0 (12.13)

where |b〉 = Q1|a〉.
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2. Ground state energy is exactly zero, unless SUSY is spontaneously broken

Let |0〉 be the ground state. A symmetry is not broken (in general) if the generator of the

corresponding symmetry transformation annihilates the state (cf. derivation of Goldstone

theorem). In our case “unbroken SUSY” means that

Q1|0〉 = Q2|0〉 = 0 (12.14)

In this case, obviously E0 = 2〈0|Q†1Q1|0〉 = 0.

Alternatively, if

|b〉 = Q1|0〉 6= 0 (12.15)

then

H|b〉 = HQ1|0〉 = Q1H|0〉 = E0Q1|0〉 = E0|b〉 (12.16)

so that there exist two degenerate vacuum (lowest energy) states (with equal positive energy),

as typical for spontaneous symmetry breaking.

3. Ground state wave function for unbroken SUSY

We have to solve

Q1|0〉 = 0⇒ d

dx
Ψ0(x) =

√
mW (x)σ3Ψ0(x) (12.17)

Therefore

Ψ0(x) = C · exp

[∫ x

0
dy
√
mW (y)σ3

]
×
(
| ↑〉 or| ↓〉

)
(12.18)

Thus, formally we have two solutions but in order to have a probability interpretation of the

wave function we must require that the solution is normalized to

∞∫
−∞

dx|Ψ0(x)|2 = 1 (12.19)

This can be achieved by changing the normalization of the WF, but only if the above integral

exists, i.e,, if it is finite. This is a certain condition on W (x).

It is possible (easy) to show that:

A normalizable solution exists if and only if

SignW (y)|y→+∞ = −SignW (y)|y→−∞ (12.20)

so that W (y) has to look like

W(y)

y

For example

W (y) = const · y

W (y) = const · y(y2 − a2)

etc. (12.21)
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The sign of the constant does not matter as we will see, it can be positive or negative.

Take W (y) = ay for illustration. Then

Ψ0(x) = C · exp

[√
ma

x2

2

(
1 0

0 −1

)]
×
[(

1

0

)
or

(
0

1

)]
(12.22)

 always ONE normalizable solution:

| ↓〉 for a > 0 and | ↑〉 for a < 0.

4. All excited states come in pairs with equal energy

Let

Ψfermi =

√
2

E
Q1Ψboson , where H Ψboson = EΨboson (12.23)

Then

H Ψfermi = EΨfermi (12.24)

Follows from [H,Q1] = 0 (as above) and Eq. (12.11). The factor
√

2/E inserted to have the

same normalization of states.

Thus the energy spectrum of our system looks as follows:

bosons fermions

← ”vacuum”, E = 0

| ↓〉 | ↑〉 (12.25)

To summarize, basic properties of SUSY systems

• Energy of the ground state is exactly zero

← in particular all corrections to E0 = 0 in pert. theory vanish!

• All particles (excites states) come in pairs: Boson + Fermion with equal masses

(if SUSY is not broken spontaneously)

How all corrections to E0 = 0 cancel?

Example:

Take

W (x) =
√
mωx (1− λx2) , λ� 1 (12.26)
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Remind

H =
1

2

p2

2m
+

1

2
W 2(x)︸ ︷︷ ︸
↓

+σ3
1

2
√
m

dW

dx︸ ︷︷ ︸
↓

bosonic part fermionic part of the potential (12.27)

bosonic part of the potential

1

2
W 2(x)

Classically, the particle sits at one of the minima; all three with E = 0. Let us consider small

oscillations around x = 0. Then

Bosonic part
1

2
W 2(x) =

1

2
mω2x2(1− λx2)2 =

1

2
mω2x2︸ ︷︷ ︸

oscillator

−λmω2x4 +O(λ2)

Fermionic part
1

2
σ3

1√
m

dW

dx
=

1

2
σ3ω(1− 3λx2) (12.28)

Then for the ground state | ↓〉 in leading order λ→ 0

E0 =
ω

2
− ω

2
= 0 (12.29)

First order in pert. theory

∆E = 〈0|δH|0〉 = λ

∞∫
−∞

dx
(mω
π

)1/2
e−mωx

2︸ ︷︷ ︸
|Ψ0|2(x)

{
−mω2x4 +

3

2
ωx2

}
= 0 (12.30)

and this cancellation of bosonic and fermionic contributions will continue to all orders in λ (becomes

quite nontrivial in high orders).

12.2 Superspace and superfields

Questions:

• Are there other systems with similar properties?

• How can one construct them in a systematic way?
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• Symmetries are usually related to invariance of the action under certain trafos. In standard QM

S =

∫
dtL(t) , L =

1

2

(
dφ

dt

)2

− V (φ) (12.31)

invariance under time translations

t→ t+ τ (12.32)

results in energy conservation. The generator of these transformations is the Hamiltonian

φ(t+ δt)− φ(t) = i[H,φ](t) δt (12.33)

The major idea in SUSY is to extend

time t −→ supertime (t, θ, θ̄) (12.34)

where θ, θ̄ are (complex) Grassman variables, or, for a field theory

space time (t, ~x) −→ superspace(-time) (xµ, θα, θ̄α̇) (12.35)

where θα, θ̄α̇ are two-component Grassman spinors.

SUSY transformations are defined as

t 7→ t+ τ

θ 7→ θ + ζ , θ̄ 7→ θ̄ + ζ̄ , t 7→ t+ iθζ̄ − iζθ̄ (12.36)

• The first thing to check is that these trafos form a group, i.e. a combination of two such trafos

is a trafo of the same type. Consider

θ
ζ1−→ θ1

ζ2−→ θ2 (12.37)

Then

� θ1 = θ + ζ1 , θ2 = θ1 + ζ2 = θ + (ζ1 + ζ2) X

similarly θ̄2 = θ̄ + (ζ̄1 + ζ̄2)

� t2 = t1 + iθ1ζ̄2 − iζ2θ̄1

= (t+ iθζ̄1 − iζ1θ̄) + i(θ + ζ1)ζ̄2 − iζ2(θ̄ + ζ̄1)

= t+ iθ(ζ̄1 + ζ̄2)− i(ζ1 + ζ2)θ̄ + iζ1ζ̄2 − iζ2ζ̄1︸ ︷︷ ︸
τ, time translation

X (12.38)

so that a superposition of two SUSY trafos is a SUSY trafo accompanied by a time translation.

This looks good.
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• The next step is to introduce functions on the superspace

variable φ(t) −→ supervariable Φ(t, θ, θ̄)[
field φ(~x, t) −→ superfield Φ(xµ, θα, θ̄α̇)

]
Define the Real superfield

Φ = Φ∗

Φ(t, θ, θ̄) = φ(t) + θψ̄(t) + ψ(t)θ̄ +D(t)θθ̄ (12.39)

It contains

φ(t) , D(t) : real boson fields

ψ(t) , ψ̄(t) : real fermion fields (12.40)

We require that under SUSY transformations

Φ(t, θ, θ̄) 7→ Φ(t′, θ′, θ̄′) (12.41)

What does this imply for component fields?

Φ = φ(t) + θψ̄(t) + ψ(t)θ̄ +D(t)θθ̄ 7→ φ(t+ iθζ̄ − iζθ̄) + (θ + ζ)ψ̄(t+ iθζ̄ − iζθ̄)

+ ψ(t+ iθζ̄ − iζθ̄)(θ̄ + ζ̄) +D(t+ iθζ̄ − iζθ̄)(θ + ζ)(θ̄ + ζ̄)

(12.42)

Keeping linear terms in ζ, ζ̄ only (quadratic terms give rise to extra time translations)

. . . = φ(t) + iθζ̄φ̇(t)− iζθ̄φ̇(t)

+ ζψ̄(t) + θψ̄(t)− iθζθ̄ ˙̄ψ + ψ(t)θ̄ − ζ̄ψ(t)− iθζ̄θ̄ψ̇

+ ζθ̄D(t) + θζ̄D(t) + θθ̄D(t)

=
[
φ(t) + ζψ̄(t) + ψ(t)ζ̄

]
+ θ
[
ψ̄(t) + iζ̄φ̇(t) + ζ̄D(t)

]
+
[
ψ(t)− iζφ̇(t) + ζD

]
θ̄ +

[
D(t)− iψ̇(t)ζ̄ + iζ ˙̄ψ

]
θ̄θ (12.43)

Thus

φ(t) 7→ φ(t) + ζψ̄(t) + ψ(t)ζ̄ = φ+ δφ

ψ(t) 7→ ψ(t)− iζφ̇(t) + ζD = ψ + δψ

ψ̄(t) 7→ ψ̄(t) + iζ̄φ̇(t) + ζ̄D(t) = ψ̄ + δψ̄

D(t) 7→ D(t)− iψ̇(t)ζ̄ + iζ ˙̄ψ = D + δD (12.44)



12 SUPERSYMMETRY 154

Lect. 26
(!) Note that δD is a total (time) derivative (important later)

A field that transforms in this way under SUSY trafos is called a superfield.

• Take two superfields, Φ1 and Φ2. Then

◦ Φ = Φ1 + Φ2 is a superfield

◦ Φ = Φ1 · Φ2 is a superfield (12.45)

First statement is trivial, for the second one

φ = φ1 φ2

ψ̄ = ψ̄1 φ2 + ψ̄2 φ1

ψ = ψ1 φ2 + ψ2 φ1

D = D1 φ2 +D2 φ1 + ψ̄1 ψ2 + ψ̄2 ψ1 (12.46)

and, e.g.,

δφ = φ1δφ2 + φ2δφ1

= φ1(ζψ̄2 + ψ2ζ̄) + φ2(ζψ̄1 + ψ1ζ̄)

= ζ(φ1ψ̄2 + φ2ψ̄1) + (ψ1φ2 + ψ2φ1)ζ̄ = ζψ̄ + ψζ̄ X (12.47)

and similar for the other components.

• Further

◦ ∂

∂t
Φ(t, θ, θ̄) is a superfield

◦ ∂

∂θ
Φ(t, θ, θ̄) is NOT a superfield︸ ︷︷ ︸

does not transform properly

(12.48)

• Covariant derivatives

Definition:

D
!

=
∂

∂θ
+ iθ̄

∂

∂t

D̄
!

= − ∂

∂θ̄
− iθ ∂

∂t
(12.49)

Exercise: show that {
D, D̄

}
= − 2i

∂

∂t

D2 = D̄2 = 0 (12.50)
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• Chiral (antichiral) time

A covariant derivative of Φ can be written in a compact form introducing an (auxiliary) time shift:

DΦ =

(
∂

∂θ
+ iθ̄

∂

∂t

)[
φ(t) + θψ̄(t) + ψ(t)θ̄ +D(t)θθ̄

]
= ψ̄(t) +D(t)θ̄ + iθ̄

∂φ

∂t
+ iθ̄θ

∂ψ̄

∂t

=

[
ψ̄ +

(
i
∂φ

∂t
+D

)
θ̄

]∣∣∣∣∣
t−iθθ̄

(12.51)

Define

tach
!

= t− iθθ̄ antichiral time

tch
!

= t+ iθθ̄ chiral time (12.52)

Useful properties:

1. . D tach = 0 D̄ tch = 0 (12.53)

Indeed, e.g. (
− ∂

∂θ̄
− iθ ∂

∂t

)
(t+ iθθ̄) = iθ − iθ = 0 (12.54)

2. Under SUSY transformations (12.36)

(t− iθθ̄) 7→ (t− iθθ̄)− 2iζθ̄ − iζζ̄ (12.55)

so that SUSY variation of tach only contains θ̄, not θ. Similarly, SUSY trafo of tch only

contains θ.

Look now at the SUSY trafo for DΦ:

DΦ = ψ̄(tach) +
(
i
∂φ

∂t
+D

)
(tach)θ̄

7→ ψ̄(tach − 2iζθ̄) +
(
i
∂φ

∂t
+D

)
(tach − 2iζθ̄)(θ̄ + ζ̄)

= ψ̄(tach)− 2iζθ̄
∂ψ̄

∂t
+
(
i
∂φ

∂t
+D

)
(tach)θ̄ +

(
i
∂φ

∂t
+D

)
(tach)ζ̄

=

[
ψ̄(tach) +

(
i
∂φ

∂t
+D

)
(tach)ζ̄

]
+

[
2iζ

∂ψ̄

∂t
+
(
i
∂φ

∂t
+D

)
(tach)

]
θ̄

(+ quadratic terms ∼ ζζ̄) (12.56)
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where from

δψ̄ =
(
i
∂φ

∂t
+D

)
ζ̄ δ

(
i
∂φ

∂t
+D

)
= 2iζ

∂ψ̄

∂t
(12.57)

This agrees with (12.44) because, e.g.

δφ(t) = ζψ̄(t) + ��
�ψ(t)ζ̄

δD(t) = ���
�−iψ̇(t)ζ̄ + iζ ˙̄ψ

}
⇒ δ

(
i
∂φ

∂t
+D

)
= iζ ˙̄ψ + iζ ˙̄ψ X (12.58)

Thus

• DΦ is a superfield (SF), as desired.

• DΦ contains less components compared to Φ (effectively a superfield of a new type)

• Chiral superfields

Definition:

A = φ(tch) + θψ̄(tch) ←− chiral superfield

Ā = φ(tach) + ψ(tach)θ̄ ←− antichiral superfield (12.59)

Equivalent definition:

Ā is called a antichiral SF if D Ā = 0

A is called a chiral SF if D̄ A = 0 (12.60)

A covariant derivative of a real SF is an (anti)chiral SF because Ā = DΦ ⇒ DĀ = D2Φ = 0 and

similar A = D̄Φ⇒ D̄A = D̄2Φ = 0.

12.3 SUSY action and Lagrangian

Now we have all necessary ingredients to define a SUSY theory:

SSUSY =

∫
dt dθ̄dθ

[
1

2
D̄ΦDΦ− F (Φ)

]
(12.61)

F (Φ) (arbitrary function) is called a superpotential

• SSUSY is invariant under SUSY transformations.

I ∫
dθ̄ dθ singles out the D-term of [. . .]. Under SUSY trafos

D 7→ D − iψ̇(t)ζ̄ + iζ ˙̄ψ

so that δD is a time derivative. Thus the action is invariant !

J
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• In terms of the component fields:

First term: ∫
dt dθ̄dθ

1

2
D̄ΦDΦ

t→tach=
1

2

∫
dt dθ̄dθ

[
ψ +

(
− i∂φ

∂t
+D

)
θ

]
t+2iθθ̄

[
ψ̄ +

(
i
∂φ

∂t
+D

)
θ̄

]
t

=

∫
dt

[
1

2

(
∂φ

∂t

)2

+
1

2
D2 − iψ̄ ∂ψ

∂t

]
t

(12.62)

Second term: ∫
dt dθ̄dθ F (Φ) =

∫
dt

[
F ′(φ)D + F ′′(φ)ψ̄ ψ

]
t

(12.63)

Thus we end up with the SUSY Lagrangian

LSUSY =
1

2

(
∂φ

∂t

)2

+
1

2
D2 − iψ̄ ∂ψ

∂t
− F ′(φ)D − F ′′(φ)ψ̄ ψ (12.64)

• Note that the D-term enters without derivatives so that it can be eliminated using EOM:

∂L

∂D
= 0 ⇒ D = F ′(φ) (12.65)

so that we can rewrite our Lagrangian as

LSUSY =
1

2

(
∂φ

∂t

)2

− 1

2

(
F ′(φ)

)2 − iψ̄ ∂ψ
∂t
− F ′′(φ)ψ̄ ψ (12.66)

• Equations of motion:

∂L

∂ψ̄
= 0 ⇒ dψ

dt
= iF ′′ψ

d

dt

∂L

∂ψ̇
− ∂L

∂ψ
= 0 ⇒ dψ̄

dt
= −iF ′′ψ̄ (12.67)

This implies

d

dt
ψ̄ψ =

( d
dt
ψ̄
)
ψ + ψ̄

( d
dt
ψ̄
)

= 0 (12.68)

so that

q = ψ̄ψ

is a conserved charge (fermion number).
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• To bring our discussion to a close, we want to recover our original QM model expression from

what we have now.

φ(t) 7→ x(t) = coordinate

ψ(t) 7→? (12.69)

The inverse transformation from Schrödinger QM for fermions to anticommuting operators

is what is called second quantization. [cf. Bjorken, Drell, Ch. 13.2]

One introduces field operators that satisfy anticomm. relations

{ψ̂(t), ψ̂(t)} = 0 , { ˆ̄ψ(t), ˆ̄ψ(t)} = 0 , {ψ̂(t), ˆ̄ψ(t)} = 1 (12.70)

as some time-dependent functions times creation or annihilation operators for which one can

take

â† = ψ̄(0) =

(
0 1

0 0

)
= σ+ â = ψ(0) =

(
0 0

1 0

)
= σ− (12.71)

where

σ± =
1

2
(σ1 ± iσ2) , [σ+, σ−] = σ3 (12.72)

Note that with this definition

â†
(

0

1

)
=

(
0 1

0 0

)(
0

1

)
=

(
1

0

)
(12.73)

so that if we interpret | ↓〉 as a state without fermions (vacuum), applying â† we obtain a

state with one fermion, just as we expect for the creation operator to do.

Taking into account the Grassmanian nature of ψ, ψ̄ we can rewrite the last term as

ψ̄ψ =
1

2
[ψ̄, ψ] +

��
�
��1

2
{ψ̄, ψ} (12.74)

and proceed from Lagrangian to the Hamiltonian:

p =
∂L

∂φ̇
= φ̇ , π =

∂L

∂ψ̇
= iψ̄ , H = φ̇ p+ ψ̇π − L (12.75)

One gets

H =
1

2
p2 +

1

2
(F ′)2 +

1

2
σ3F

′′ (12.76)

(the term in dotψ cancels out)

Now we can identify

F ′(x) = W (x) (and m = 1) (12.77)

and get our starting expression.
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And the very last point. In this representation

q = ψ̄ψ =
1

2
(1 + σ3) (12.78)

so that

q

(
1

0

)
= 1 q

(
0

1

)
= 0 (12.79)

which justifies the names “boson state” and “fermion state” that we have chosen at the

beginning.
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Appendices

A Collection of formulas

Dirac algebra in 4 Dimensions

Traces with even number of γ-matrices

Tr{1} = 4 (A.1)

Tr{γµγν} = 4gµν (A.2)

Tr{γµγνγαγβ} = 4[gµνgαβ + gµβgνα − gµαgνβ ] (A.3)

Traces with odd number of γ-matrices

Tr{γµ1 . . . γµ2k+1
} = 0 , k = 0, 1, 2, . . . (A.4)

Traces including a γ5-matrix

Tr{γ5} = 0 (A.5)

Tr{γµγνγ5} = 0 (A.6)

Tr{γµγνγαγβγ5} = 4iεµναβ (A.7)

Tr{γµ1 . . . γµ2k+1
γ5} = 0 , k = 0, 1, 2, . . . (A.8)

Useful identities for products of γ-matrices

γµγ
µ = 4 (A.9)

γµγαγ
µ = −2γα (A.10)

γµγαγβγ
µ = 4gαβ (A.11)

γµγαγβγργ
µ = −2γργβγα (A.12)

γµγαγν = gαµγν + gανγµ − gµνγα + iεµανβγ5γβ (A.13)

Useful identities for products of ε-tensors

εαβµνε
αβµν = −24 (A.14)

εαβµνε
ρβµν = −6gρα (A.15)

εαβµνε
ρσµν = −2[gραg

σ
β − gσαg

ρ
β] (A.16)

εα1α2α3α4ε
β1β2β3β4 = −det

(
gβkαi

)
(A.17)

1

2
εαβµνσ

µν = iσαβγ5 (A.18)
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!!! We use definitions from Bjorken and Drell:

γ5 = iγ0γ1γ2γ3 , ε0123 = +1 (A.19)

Be careful, some other (equally famous) books use different definitions:

γ5 = iγ0γ1γ2γ3 , ε0123 = −ε0123 = +1 Itzykson, Zuber (A.20)

γ5 = iγ0γ1γ2γ3 = −iγ0γ1γ2γ3 , ε0123 = −ε0123 = +1 Okun (A.21)

This ambiguity is a standard source of sign errors!

Identities involving Dirac spinors

ūλ(p)uλ
′
(p) = 2mδλλ′

v̄λ(p) vλ
′
(p) = −2mδλλ′

ūλ(p) vλ
′
(p) = v̄λ(p)uλ

′
(p) = 0 (A.22)

ūλ(p)γµu
λ′(p) = v̄λ(p)γµv

λ′(p) = 2pµδλλ′ (A.23)

∑
λ=±1/2

[
uλα(p)ūλβ(p)− vλα(p)v̄λβ(p)

]
= 2mδαβ = 2m(I)αβ (A.24)

∑
λ=±1/2

uλα(p)ūλβ(p) = (/p+m)αβ

∑
λ=±1/2

vλα(p)v̄λβ(p) = (/p−m)αβ (A.25)

Hermitian and Charge conjugation

γ0γ†νγ
0 = γν (A.26)

C = iγ2γ0 , C−1γµC = −γTµ , C = −C−1 = −C† = −CT (A.27)

Integration in the 4 dimensional Euclidean space

Definitions:

ko → ik4 (A.28)

d4k = dkod
3~k = id4kE (A.29)

k2 = k2
0 − ~k2 = −(k2

1 + k2
2 + k2

3 + k2
4) = −k2

E (A.30)
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Integration: ∫
dDkEf(k2

E) =

∫
dΩD

∞∫
0

dkEk
D−1
E f(k2

E) (A.31)

=
π
D
2

Γ
(
D
2

) ∞∫
0

dk2
E

(
k2
E

)D
2
−1
f(k2

E) (A.32)

Dimensional Regularization (D = 4− 2ε)

Definitions: ∫
d4k →

∫
dDk (A.33)

e0 → e0µ
2−D

2 (A.34)

Dirac algebra in D Dimensions

Defining the ε-tensor and γ5 in D dimensions involves subtleties that would require a detailed

explanation; we will leave out the corresponding formulas.

γµγ
µ = D (A.35)

γµγαγ
µ = (2−D)γα (A.36)

γµγαγβγ
µ = 4gαβ + (D − 4)γβγα (A.37)

γµγαγβγργ
µ = −2γργβγα + (4−D)γαγβγρ (A.38)

Feynman parameter integrals for products of propagators:

1

A ·B
=

1∫
0

dx
1

[xA+ (1− x)B]2
(A.39)

Γ(a)Γ(b)

Aa ·Bb
=

1∫
0

dx dy xa−1yb−1 δ(1− x− y)
Γ(a+ b)

[xA+ yB]a+b

=

1∫
0

dxxa−1(1− x)b−1 Γ(a+ b)

[xA+ (1− x)B]a+b
(A.40)

This representation can be generalized to an arbitrary number of the denominators, e.g.,

Γ(a)Γ(b)Γ(c)

Aa ·Bb · Cc
=

1∫
0

dx dy dz xa−1yb−1zc−1 δ(1− x− y − z) Γ(a+ b+ c)

[xA+ yB + zC]a+b+c
(A.41)
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Loop integrals in D Dimensions

∫
dDk

Γ(a)

[−k2 −A− iε]a
= iπ

D
2

Γ
(
a− D

2

)
[−A− iε]a−

D
2

(A.42)

∫
dDk

Γ(a)

[−k2 −A− iε]a
kµkν = iπ

D
2

(
−gµν

2

) Γ
(
a− 1− D

2

)
[−A− iε]a−1−D

2

(A.43)

∫
dDx

Γ(α)

(−x2 − a2 + iε)α
= −iπD/2 Γ(α−D/2)

[−a2 + iε]α−D/2∫
dDx

Γ(α)

(−x2 − a2 + iε)α
xµxν = −iπD/2

(
−gµν

2

) Γ(α−D/2− 1)

[−a2 + iε]α−D/2−1
(A.44)

Fourier integrals in D Dimensions

∫
dDx eiqx

Γ(α)

[−x2 + iε]α
= −iπD/22D−2α Γ(D/2− α)

[−q2 − iε]D/2−α∫
dDq e−iqx

Γ(α)

[−q2 − iε]α
= +iπD/22D−2α Γ(D/2− α)

[−x2 + iε]D/2−α
(A.45)

B Feynman rules for QED

B.0.1 “standard” version

• Lines with arrows:

Charged particles are shown by solid lines with an arrow. The direction of the arrow shows

the flow of the negative charge. For example means that the negative charge is

flowing from left to right; it can be an electron moving to the right, or positron to the left.

• External lines:

Electron in the initial state:
p

= uλ(p)

Electron in the final state:
p

= ūλ(p)

Positron in the initial state:
p

= v̄λ(p)

Positron in the final state:
p

= vλ(p)

Photon in the initial state:
p

= eµ(p)

Photon in the final state:
p

= e∗µ(p) (B.1)
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• Propagators:

Dirac propagator
p

=
i(/p+m)

p2 −m2 + iε

Photon propagator (Feynman gauge):
p

=
−igµν
p2 + iε

(B.2)

• Interaction vertex:

�

= −ieγµ , e =
√

4παQED > 0 αQED '
1

137
(B.3)

• Integration over loop momenta:

∫
d4p

(2π)4
for each loop momentum (B.4)

• Energy-momentum conservation

(2π)4δ(4)(sum of all ingoing minus outgoing momenta) (B.5)

• Sign factors

a) Extra (-1) factor for each closed fermion loop

b)

Extra (-1) between the diagrams that differ only by the exchange of two
identical external fermion lines. This applies not only to the exchange of
identical particles in the final state but also, for example, the exchange
of initial particle and final antiparticle.

(B.6)

B.0.2 Alternative possibility (used e.g. in my QED lectures)

The differences are the following:

• Propagators:

Dirac propagator
p

=
(/p+m)

m2 − p2 − iε

Photon propagator (Feynman gauge):
p

=
gµν

p2 + iε
(B.7)
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• Interaction vertex:

�

= −eγµ , e =
√

4παQED > 0 αQED '
1

137
(B.8)

• Integration over loop momenta:

∫
d4p

(2π)4i
for each loop momentum (B.9)

that is, each propagator has an extra factor i, each momentum integral 1/i and each vertex 1/i.

This set of rules is equivalent to the standard one because of the Euler’s formula: For each Feynman

diagram the following relation holds:

L = I − V + 1

where

L = the number of loops

I = the number of internal lines (number of propagators)

V = the number of interaction vertices (B.10)

Thus, for an arbitrary Feynman diagram, replacing the “standard” expressions by the “nonstan-

dard” ones one obtains an extra factor(
1

i

)L (
i
)I (1

i

)V
=
(
i
)I−V−L

= −i . (B.11)

Since this factor is the same for all diagrams, it can be absorbed in the definition of the Green func-

tions and is at the end irrelevant (because physical observables are written in terms of |amplitude|2)


