Übungen zu Quantenfeldtheorie

Prof. Dr. V. Braun

PCAC in the linear σ-model

Consider again the Lagrangian of the linear σ-model of the previous Problem set:

$$
\begin{gather*}
\mathcal{L}=\frac{1}{2}\left[\sum_{j=1}^{3}\left(\partial_{\mu} \pi_{j}\right)^{2}+\left(\partial_{\mu} \sigma\right)^{2}\right]+\bar{N} i \gamma_{\mu} \partial_{\mu} N+g \bar{N}\left(\sigma+i \gamma_{5} \sum_{j=1}^{3} \pi_{j} \tau_{j}\right) N \\
+\frac{\mu^{2}}{2}\left(\sigma^{2}+\sum_{j=1}^{3} \pi_{j}^{2}\right)-\frac{\lambda}{4}\left(\sigma^{2}+\sum_{j=1}^{3} \pi_{j}^{2}\right)^{2} \tag{1}
\end{gather*}
$$

Suppose we add a symmetry-breaking term to \mathcal{L}.

$$
\begin{equation*}
\mathcal{L}_{\mathrm{SB}}=-c \sigma(x) \tag{2}
\end{equation*}
$$

where c is a constant. In the following we use the notation $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$.

Aufgabe 1:

Find the new minimum for the effective potential

$$
\begin{equation*}
V=-\frac{\mu^{2}}{2}\left(\sigma^{2}+\vec{\pi}^{2}\right)+\frac{\lambda}{4}\left(\sigma^{2}+\vec{\pi}^{2}\right)^{2}+c \sigma \tag{3}
\end{equation*}
$$

[Find the corresponding algebraic equation. You do not need to solve it explicitly.] Hint:
Minimize V as a function of σ and $|\vec{\pi}|$. Show that extremal conditions for $c \neq 0$ reduce to $|\vec{\pi}|=0$ and

$$
\begin{equation*}
0=\lambda \sigma^{3}-\mu^{2} \sigma+c \tag{4}
\end{equation*}
$$

Aufgabe 2:

Show that in this case the pions are no longer massless and, on the tree level, their masses are proportional to the constant c. You should get

$$
\begin{equation*}
m_{\sigma}^{2}=2 \mu^{2}-\frac{3 c}{v}+O\left(c^{2}\right), \quad m_{\pi}^{2}=-\frac{c}{v}+O\left(c^{2}\right) \tag{5}
\end{equation*}
$$

where v is the vacuum expectation value for σ.
Hint:
You need to find the minimum $\sigma=\tilde{v}$ of the potential. For this you can make an Ansatz $\tilde{v}=v+\delta v$, where $v \equiv \sqrt{\frac{\mu^{2}}{\lambda}}$ is the minimum of V for $c=0$. Notice that you may ignore quadratic and higher terms in δv and solve for δv. Then make a field redefinition $\sigma \rightarrow \sigma+\tilde{v}$ and look for the quadratic terms in σ and $\vec{\pi}^{2}$. These are the mass terms.

Aufgabe 3:

Show that the axial-vector current A_{μ} derived in the Problem set 8 is no longer conserved. Calculate the divergence $\partial_{\mu} A^{\mu}$ and show that it is proportional to the pion field:

$$
\begin{equation*}
\partial_{\mu} \overrightarrow{A^{\mu}}=-c \vec{\pi} \tag{6}
\end{equation*}
$$

To this end, notice that since A_{μ} by construction is a Noether current, its divergence is related to the variation of the Lagrangian with respect to the corresponding symmetry transformation: $\vec{\beta} \cdot \partial_{\mu} A^{\mu}=\delta_{5} \mathcal{L}$. The right-hand-side would vanish were it not for the presence of the symmetry-breaking term that we introduce here.

Remark:

The constant c can be related to the pion mass and the pion decay constant, m_{π} and f_{π}. The definition reads

$$
\begin{equation*}
\langle 0| A_{\mu}^{a}(0)\left|\pi^{b}(p)\right\rangle=i \delta^{a b} \frac{1}{\sqrt{2}} f_{\pi} p_{\mu} \tag{7}
\end{equation*}
$$

Thus the matrix element of the divergence is given by

$$
\begin{equation*}
\langle 0| \partial^{\mu} A_{\mu}^{a}(0)\left|\pi^{b}(p)\right\rangle=\delta^{a b} \frac{1}{\sqrt{2}} f_{\pi} m_{\mu}^{2}=-c\langle 0| \pi^{a}(0)\left|\pi^{b}(p)\right\rangle \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
-c=\frac{1}{\sqrt{2}} f_{\pi} m_{\mu}^{2} \tag{9}
\end{equation*}
$$

Combining this with the result for the pion mass (Aufgabe 2) we see that the vacuum expectation value of the σ-field is simply the pion decay cosntant: $v=f_{\pi} / \sqrt{2}$.

