Übungen zu Quantenfeldtheorie

Prof. Dr. V. Braun
SS 2023

Symmetries of the linear σ-model

The Lagrangian for the linear σ-model is given by (summation signs written out here for clarity; for the rest of the problem set: Einsteins sum convention)

$$
\begin{gather*}
\mathcal{L}=\frac{1}{2}\left[\sum_{j=1}^{3}\left(\partial_{\mu} \pi_{j}\right)^{2}+\left(\partial_{\mu} \sigma\right)^{2}\right]+\bar{N} i \gamma_{\mu} \partial_{\mu} N+g \bar{N}\left(\sigma+i \gamma_{5} \sum_{j=1}^{3} \pi_{j} \tau_{j}\right) N \\
+\frac{\mu^{2}}{2}\left(\sigma^{2}+\sum_{j=1}^{3} \pi_{j}^{2}\right)-\frac{\lambda}{4}\left(\sigma^{2}+\sum_{j=1}^{3} \pi_{j}^{2}\right)^{2} \tag{1}
\end{gather*}
$$

where $N=\binom{p}{n}$ is an isospin- $1 / 2$ nucleon field, τ_{j} are pauli-matrices, $\pi \equiv \sum_{j=1}^{3} \pi_{j} \tau_{j}$ an isospin one pion field (with real scalar field components π_{j}), and σ an isospin zero real scalar field. Do not confuse the different vector spaces involved. The γ-matrices and p, n fields live in the usual four-dimensional Dirac spin space, while the τ_{j} are proportional to the unit matrix in that space. This is not to be confused with the two-dimensional isospin space, where N is a vector, with components p and n, and the Pauli matrices τ_{j} act in this space (γ_{μ} is proportional to the unit matrix in isospin space).
It is convenient to use a 2×2 matrix to represent the spin zero fields collectively:

$$
\begin{equation*}
\Sigma=\sigma+i \pi \tag{2}
\end{equation*}
$$

and it is also useful to define the left-handed and right-handed chiral nucleon fields as

$$
\begin{equation*}
N_{L}=\frac{1}{2}\left(1-\gamma_{5}\right) N, \quad N_{R}=\frac{1}{2}\left(1+\gamma_{5}\right) N . \tag{3}
\end{equation*}
$$

Aufgabe 1:

Show that the Lagrangian can be written in these notations as

$$
\begin{align*}
\mathcal{L}= & \frac{1}{2} \operatorname{tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)+\bar{N}_{L} i \gamma^{\mu} \partial_{\mu} N_{L}+\bar{N}_{R} i \gamma^{\mu} \partial_{\mu} N_{R}+g\left(\bar{N}_{L} \Sigma N_{R}+\bar{N}_{R} \Sigma^{\dagger} N_{L}\right) \\
& +\frac{\mu^{2}}{4} \operatorname{tr}\left(\Sigma \Sigma^{\dagger}\right)-\frac{\lambda}{16}\left[\operatorname{tr}\left(\Sigma \Sigma^{\dagger}\right)\right]^{2} \tag{4}
\end{align*}
$$

Aufgabe 2:

Show that the Lagrangian is invariant under the isospin transformations:

$$
\begin{equation*}
N \rightarrow N^{\prime}=U N, \quad \Sigma \rightarrow \Sigma^{\prime}=U \Sigma U^{\dagger} \tag{5}
\end{equation*}
$$

where $U=\exp \left[\frac{i}{2} \alpha_{j} \tau_{j}\right]$ is an arbitrary 2×2 unitary matrix with $\alpha_{j} \in \mathbb{R}$. Use Noether approach to find the corresponding conserved isospin vector currents $V_{j}^{\mu}, j=1,2,3$. You should get

$$
\begin{equation*}
V_{j}^{\mu}=\bar{N} \gamma^{\mu} \frac{\tau_{j}}{2} N-\epsilon_{j k l} \pi_{l} \partial^{\mu} \pi_{k} \tag{6}
\end{equation*}
$$

Aufgabe 3:

Show that the Lagrangian is invariant under the axial isospin transformations:

$$
\begin{equation*}
N \rightarrow N^{\prime}=\exp \left(\frac{i}{2} \beta_{j} \tau_{j} \gamma_{5}\right) N, \quad \Sigma \rightarrow \Sigma^{\prime}=V^{\dagger} \Sigma V^{\dagger} \tag{7}
\end{equation*}
$$

where $V=\exp \left[\frac{i}{2} \beta_{j} \tau_{j}\right]$ is an arbitrary 2×2 unitary matrix with $\beta_{j} \in \mathbb{R}$. Use Noether approach to find the corresponding conserved isospin axial-vector currents A_{j}^{μ}. You should find

$$
\begin{equation*}
A_{j}^{\mu}=\bar{N} \gamma^{\mu} \gamma_{5} \frac{\tau_{j}}{2} N-\left(\pi_{j} \partial^{\mu} \sigma-\sigma \partial^{\mu} \pi_{i}\right) \tag{8}
\end{equation*}
$$

Aufgabe 4:

Thanks to the current conservation, the charges must be time-independent. Use this property and the canonical equal-time commutation relations to calculate the charge commutators

$$
\begin{equation*}
\left[Q_{i}, Q_{j}\right], \quad\left[Q_{i}, Q_{5 j}\right], \quad\left[Q_{5 i}, Q_{5 j}\right] \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{i}=\int d^{3} x V_{i}^{0}(x), \quad Q_{5 i}=\int d^{3} x A_{i}^{0}(x) \tag{10}
\end{equation*}
$$

For fermion fields, you may find the following identity useful:

$$
\begin{equation*}
[A B, C D]=-A C\{B, D\}+A\{B, C\} D-C\{A, D\} B+\{C, A\} D B \tag{11}
\end{equation*}
$$

where $\{\ldots, \ldots\}$ stands for an anticommutator. You should find

$$
\begin{equation*}
\left[Q_{i}, Q_{j}\right]=i \epsilon_{i j k} Q_{k}, \quad\left[Q_{i}, Q_{5 j}\right]=i \epsilon_{i j k} Q_{5 k}, \quad\left[Q_{5 i}, Q_{5 j}\right]=i \epsilon_{i j k} Q_{k} \tag{12}
\end{equation*}
$$

Remark:

One can combine vector and axial-vector transformations as follows:

$$
\begin{equation*}
N_{R} \rightarrow N_{R}^{\prime}=R N_{R}, \quad N_{L} \rightarrow N_{L}^{\prime}=L N_{L}, \quad \Sigma \rightarrow \Sigma^{\prime}=L \Sigma R^{\dagger} \tag{13}
\end{equation*}
$$

where we have introduced the right-handed and left-handed transformations:

$$
\begin{equation*}
R=\exp \left(\frac{i}{2} \gamma_{j} \tau_{j}\right), L=\exp \left(\frac{i}{2} \delta_{j} \tau_{j}\right), \tag{14}
\end{equation*}
$$

with $\gamma_{j}=\delta_{j}=\alpha_{j}$ for the vector transformation and $\gamma_{j}=-\delta_{j}=\beta_{j}$ for the axial transformation. Under the infinitisemal transformation $R \simeq 1+\frac{i}{2} \gamma_{j} \tau_{j}$ one obtains, for example $\delta_{R} N_{R}=\frac{i}{2} \gamma_{j} \tau_{j} N_{R}$ and $\delta_{R} N_{L}=0$, etc. From the corresponding field variations one can immediately work out the corresponding conserved currents R^{μ} (right-handed) and L^{μ} (lefthanded) and it is easy to see that the vector and axial currents are given in terms of them as

$$
\begin{equation*}
V_{i}^{\mu}=R_{i}^{\mu}+L_{i}^{\mu}, \quad A_{i}^{\mu}=R_{i}^{\mu}-L_{i}^{\mu} \tag{15}
\end{equation*}
$$

The same relation obviously holds for the conserved charges. If we define

$$
\begin{equation*}
Q_{R i}=Q_{i}+Q_{5 i}, \quad Q_{R i}=Q_{i}-Q_{5 i} \tag{16}
\end{equation*}
$$

the algebra becomes

$$
\begin{equation*}
\left[Q_{L i}, Q_{L j}\right]=i \epsilon_{i j k} Q_{L k}, \quad\left[Q_{L i}, Q_{5 R j}\right]=0, \quad\left[Q_{R 5 i}, Q_{R 5 j}\right]=i \epsilon_{i j k} Q_{R k} \tag{17}
\end{equation*}
$$

Namely, each set $\left\{Q_{R i}\right\}$ and $\left\{Q_{L i}\right\}$ separately form an $S U(2)$ algebra. This is why it is referred as the $S U(2)_{L} \times S U(2)_{R}$ algebra.

