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Hint:
In all three exercises you should write the kinetic term plus the gauge �xing term in the
action as ∫

d4x

∫
d4y Aµ(x)Kµν(x, y)A

ν(y), (1)

where

Kµν(x, y) =

∫
d4p

(2π)4
D−1
µν (p)e

−ip(x−y). (2)

Proceed to invert the matrix D−1
µν (p) to get the momentum space propagator Dµν(p).

For this you should make an Ansatz for D−1
µν (p) in terms all the Lorentz structures that can

appear, e.g. for Aufgabe 2

Dµν(p) = Agµν +Bpµpν + Cnµnν +Dpµnν + Enµpν , (3)

where A, ..., E are functions of the Lorentz scalars that have to be determined.

Aufgabe 1: The propagator for a massive vector �eld

For a massive abelian vector �eld Vµ, the free Lagrangian is given by

L0 = −
1

4
FµνF

µν +
1

2
M2VµV

µ (4)

Show that the propagator is given by

Dµν(k) =
−i

k2 −M2 + iε

[
gµν −

kµkν
M2

]
. (5)

Aufgabe 2: gauge boson propagator in the axial gauge

Consider a massless abelian vector �eld

LA, kinetic = −
1

4
FµνF

µν . (6)

The axial gauge condition is given by

nµAµ = 0 (7)

where nµ with n2 < 0 is a space-like vector. Use the Faddeev-Popov method (insertion of a
delta-function in the path-integral) to implement axial gauge. You should get

LA, kinetic + gauge fixing term = −1

4
FµνF

µν +
1

2ξ
(n · A)2. (8)



Calculate the propagator of a gauge boson in the axial gauge. You should get

Dµν(k) =
−i

k2 + iε

[
gµν −

1

k · n
(nµkν + kµnν)−

ξk2 − n2

(k · n)2
kµkν

]
. (9)

Aufgabe 3: gauge boson propagator in the Coulomb gauge

Consider again a massless abelian vector �eld, see (6). Use the Fadeev-Popov method to
implement Coulomb gauge

~∂ · ~A = 0 (10)

to get a Lagrangian analogous to (8) and calculate the propagator. To solve this problem,
we suggest rewriting this gauge condition as

∂µA
µ − (cµ∂

µ)(cνA
ν) = 0 where cµ = (1, 0, 0, 0). (11)

Then make the same Ansatz as (3) with n→ c.
I get

Dµν(k) =
−i

k2 + iε

[
gµν +

(c · p)2 − p2(1− ξ)
(p2 − (c · p)2)2

pµpν +
c · p

p2 − (c · p)2
(cµpν + cνpµ)

]
. (12)


