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The nonlinear sigma model discussed in the lectures can be thought as a quantum theory
of �elds that are coordinates of the unit sphere. A slightly more complicated space of high
symmetry is complex projective space, called CPN . This space can be de�ned as the space
of (N+1)-dimensional complex vectors (z1, . . . , zN+1) subject to the condition∑

j

|zj|2 = 1, (1)

with points related by an overall phase rotation identi�ed, that is

(eiαz1, . . . , e
iαzN+1) identi�ed with (z1, . . . , zN+1) . (2)

In this problem (Peskin, Schröder, pp 466-467) we study the two-dimensional quantum �eld
theory whose �elds are coordinates on this space - the so-called CPN -model.

Aufgabe 1:

One way to represent a theory of coordinates of CPN is to write a Lagrangian depending
on the �elds zj(x), where x is a two-dimensional coordinate, subject to the constraint in
Eq. (1), which also has the local symmetry

zj(x)→ eiα(x)zj(x) (3)

independently at each point x. Show that the following Lagrangian has this symmetry:

L =
1

g2

[∑
j

|∂µzj|2 −
∣∣∣∑

j

z∗j∂µzj

∣∣∣2]. (4)

To prove the invariance, you will need to use the constraint on the zj and its consquence:∑
j

z∗j∂µzj = −
∑
j

(∂µz
∗
j )zj

Show that the nonlinear sigma model for the case N=3 can be converted to the CPN model
for the case N = 1 by the substitution

ni = z∗σiz

where σi are Pauli sigma matrices. You may �nd the following identity useful:

σasrσ
a
s′r′ = 2δsr′δs′r − δsrδs′r′ (5)

where r, s, . . . are two-dimensional indices and the sum over a is implied.



Aufgabe 2:

Show that the above Lagrangian of the CPN model can be obtained from the Lagrangian

L =
1

g2

[∑
j

|Dµzj(x)|2 − λ(x)
(∑

j

|zj|2 − 1
)]
. (6)

where Dµ = ∂µ + iAµ, by taking the functional integral over the (auxilary) �elds Aµ(x) and
λ(x).
Hint: Use eq. (3.93) in the script.

Aufgabe 3:

One can solve the CPN model in the limit N →∞ by using the Lagrangian in Eq. (6) and
integrating over the �elds zj. Show that this integral leads to the expression

Z =

∫
DADλ exp

[
−NTr ln(−D2 − λ) + i

g2

∫
d2xλ

]
(7)

where we kept only the leading terms for N →∞, g → 0 with g2N �xed. Using the methods
similar to those we used for the sigma model, examine the conditions for minimizing the
exponent (i.e. the action) with respect to λ(x) and Aµ(x). Show that these conditions have
a solution at Aµ = 0 and constant λ = m2 > 0. Show that, if g2 is de�ned at the scale M ,
m can be written as

m ≈M exp

[
− 2π

g2N

]
(8)

Hints:

� For a complex scalar �eld φ we have
∫
Dφ exp

(
−
∫
ddx φ∗Kφ

)
= N (detK)−1

� Assuming λ to be constant will produce a �volume� factor
∫
d2x = δ2(0), which you

can just treat as a �nite number.

� As usual, you may treat
∫
ddp as being over Rd and introduce the cuto� M only in the

last step after you performed the angular integration
∫∞
0
dp→

∫M
0
dp.

� Alternatively, you can also use dimensional regularization (with MS and ε = 2− d/2)∫
d2p
(2π)2

→
(
µ2eγE

4π

)ε ∫
ddp
(2π)d

. You will encounter a 1
ε
pole term, which you can drop (it is

taken into account by renormalization). You should get λ = µ2 exp
(
− 4π

g2N

)
.

Aufgabe 4: (optional)

Now expand the exponent around Aµ = 0. Show that the �rst nontrivial term in this ex-
pansion is proportional to the vacuum polarization of massive scalar �elds. Evaluate this
expression using dimensional regularization, and show that it yields a standard kinetic ener-
gy term for Aµ. Thus the strange nonlinear �eld theory that we started with is �nally
transformed into a theory of (N+1) massive scalar �elds interacting with a massless photon!
Hints:



� For this exercise you may treat λ = m2 = const..

� There are two ways to do this. Option 1 is to directly expand the ln(...) in (7) in
terms of Aµ up to the quadratic terms and take the trace. Option 2 is two rewrite the
expTr ln(...) in terms of scalar �elds and calculate the two one-loop diagrams with two
external A legs.

� It is convenient to work with Fourier transformedA �elds, i.e.Aµ(x) =
∫

ddk
(2π)d

e−ikxÃµ(k).

� In both cases you will encounter the loop integral
∫

ddp
(2π)d

pµpν
[(p+k/2)2−m2][(p−k/2)2−m2]

. Com-
bine the denominators using Feynman parameters and evaluate the p-integral. In the
resulting expression expand in ε = 2− d/2. To evaluate the integral over the Feynman
parameter you should expand the integrand in k/m and drop terms O((k/m)4).

� In the end you want to get something proportional to
∫

d2k
(2π)2

Ãµ(k)Ãν(−k)
(
− gµνk2 +

kµkν) = −1
2

∫
d2x F µνFµν .


