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Problem 1

Consider a real massive scalar field ¢ with ¢* potential in d space-time dimensions
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In the lecture you have shown
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using the path integral representation.
a) Verify eq. (2) diagrammatically to first order in .
b) Give a diagrammatical argument for eq. (2) that applies to all orders in .

Problem 2
Consider the theory with the Lagrangian density
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where o is a static scalar field (i.e. has no kinetic term).
a) Show that classically the Lagrangian £’ in eq. (3) is equivalent to £ in eq. (1).

b) Using the path integral representation, show that £’ is equivalent to £, also in the quantum
theory. That is, you need to show that the n-point correlation functions
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are the same.
Hint: Make a suitable change of variables 0 — o + 7 in the path integral.

Remark: Removing a particle from the theory in this way is commonly referred to as “inte-
grating out” that particle. In this case it was easy, since ¢ was a static field.

Problem 3

Consider again the Lagrangian £ in eq. (3).

a) Show that the free propagator of the o particle reads
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Hint: You may add a term §(9,0)? to £’ and then let € — 0 later.
b) Give a diagrammatical argument that the quantum theories of £’ and L are equivalent.



