Übungen zu Quantenfeldtheorie

Prof. Dr. V. Braun
SS 2023

Problem 1: Determinant formula

Let K be a positive definite (i.e. symmetric and all eigenvalues are positive) $n \times n$ matrix and $J \in \mathbb{R}^{n}$. Show that

$$
\begin{equation*}
\int d^{n} x e^{-\frac{1}{2} x^{T} K x+J^{T} x}=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det}(M)}} e^{\frac{1}{2} J^{T} K^{-1} J} . \tag{1}
\end{equation*}
$$

Remark: Consider an operator K, which can be viewed as the limit of a positive definite matrix acting on functions as

$$
(K x)(t)=\int_{t_{i}}^{t_{f}} d t^{\prime} K\left(t, t^{\prime}\right) x\left(t^{\prime}\right)
$$

where the integration kernel $K\left(t, t^{\prime}\right)$ may be distribution-valued (i.e. may depend on delta functions and its derivatives). The continuum version of eq. (1) reads

$$
\begin{equation*}
\int_{q\left(t_{i}\right)=q_{i}}^{q\left(t_{f}\right)=q_{f}} \mathcal{D} q e^{-\frac{1}{2} \int_{t_{i}}^{t_{f}} d t q(t)(K q)(t)+\int_{t_{i}}^{t_{f}} d t J(t) q(t)}=\lim _{n \rightarrow \infty} \frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det}(K)}} e^{\frac{1}{2} \int_{t_{i}}^{t_{f}} d t J(t)\left(K^{-1} J\right)(t)}, \tag{2}
\end{equation*}
$$

where the inverse operator K^{-1} is defined by

$$
\delta\left(t-t^{\prime}\right)=\int_{t_{i}}^{t_{f}} d t^{\prime \prime} K\left(t, t^{\prime \prime}\right) K^{-1}\left(t^{\prime}, t^{\prime \prime}\right)
$$

The determinant of K is the product of eigenvalues of the differential equation

$$
(K-\lambda) q=0
$$

subject to the boundary conditions $q\left(t_{i}\right)=q_{i}, q\left(t_{f}\right)=q_{f}$.

Problem 2: Propagator of the harmonic oscillator from path integral

We calculate the path integral representation of the propagator

$$
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\int_{q\left(t_{i}\right)=q_{i}}^{q\left(t_{f}\right)=q_{f}} \mathcal{D} q e^{i S[q]}
$$

for the harmonic oscillator

$$
S[q]=\frac{1}{2} \int_{t_{i}}^{t_{f}} d t\left(\dot{q}^{2}-\omega^{2} q^{2}\right)
$$

a) Determine the classical path q_{cl}, the solution of the equation $\delta S=0$ subject to the boundary conditions $q\left(t_{i}\right)=q_{i}, q\left(t_{f}\right)=q_{f}$.
b) Show that

$$
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=e^{i S\left[q_{\mathrm{c}}\right]} \int_{q\left(t_{i}\right)=0}^{q\left(t_{f}\right)=0} \mathcal{D} q e^{i S[q]} .
$$

c) Evaluate the remaining path integral by using eq. (2) and compute the determinant to get the final result

$$
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\sqrt{\frac{\omega}{2 \pi i \sin \left(\omega\left(t_{f}-t_{i}\right)\right)}} \exp \left(\frac{i \omega}{2} \frac{\left(q_{i}^{2}+q_{f}^{2}\right) \cos \left(\omega\left(t_{f}-t_{i}\right)\right)-2 q_{f} q_{i}}{\sin \left(\omega\left(t_{f}-t_{i}\right)\right)}\right) .
$$

Hints:
$-\frac{\sin x}{x}=\prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{\pi^{2} k^{2}}\right)$

- You may ignore all (possibly infinite) constant factors and at the end, determine the overall constant factor by comparing your result with the free propagator for $\omega \rightarrow 0$, which was calculated in Blatt 2, Problem 1.

Problem 3: Path integral for an infinite potential barrier

Consider the Hamiltonian

$$
H=\frac{p^{2}}{2 m}+V(q)
$$

where

$$
V(q)= \begin{cases}0 & , q \geq 0 \\ \infty & , q<0\end{cases}
$$

a) Show that

$$
\begin{equation*}
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\Theta\left(q_{f}\right) \Theta\left(q_{i}\right)\left(\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle_{\text {free }}-\left\langle-q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle_{\text {free }}\right), \tag{3}
\end{equation*}
$$

where $\Theta(x)$ is the Heaviside function and $\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle_{\text {free }}$ denotes the propagator for a free particle ($V=0$), which was computed in Blatt 2, Problem 1.
Hint: Find continuous energy eigenstates $\psi_{E}(x)=\langle x \mid E\rangle$ such that

$$
\int_{0}^{\infty} d E \psi_{E}^{*}(x) \psi_{E}(y)=\Theta(x) \delta(x-y)
$$

and use this completeness relation.
b) Give an intuitive argument, based on the path integral representation of $\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle$, for the correctness of eq. (3).

