Übungen zu Quantenfeldtheorie

Prof. Dr. V. Braun
SS 2023
Jakob Schönleber
Blatt 2

Problem 1: Transition amplitude for a free particle

Show that the transition amplitude for a free particle with mass m moving in one dimension has the expression

$$
\begin{equation*}
\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle=\left\langle q^{\prime}\right| e^{-i \widehat{H}\left(t^{\prime}-t\right)}|q\rangle=\left[\frac{m}{2 \pi i\left(t^{\prime}-t\right)}\right]^{1 / 2} \exp \left[\frac{i m}{2} \frac{\left(q^{\prime}-q\right)^{2}}{t^{\prime}-t}\right] \tag{1}
\end{equation*}
$$

To do the calculation, give t^{\prime} a small imaginary part, $t^{\prime} \rightarrow t^{\prime}-i \epsilon$, and take $\epsilon \rightarrow 0^{+}$at the end of the calculation. Show that this is justified, given that we interpret the position space propagator $\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle$ as a distribution, i.e. it is supposed to be integrated with an integrable wave function ψ.

$$
\begin{equation*}
\psi\left(q^{\prime}, t^{\prime}\right)=\int_{-\infty}^{\infty} d q\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle \psi(q, t) \tag{2}
\end{equation*}
$$

Hint: Use the dominated convergence theorem.

Problem 2: Spreading of a wave packet

For the free particle, suppose $\psi(q, t=0)$ is a Gaussian wave packet

$$
\psi(q, t=0)=\left(\frac{1}{2 \pi \sigma_{0}^{2}}\right)^{1 / 4} \exp \left[-\frac{(q-a)^{2}}{4 \sigma_{0}^{2}}\right] .
$$

Show that it will spread as time evolves:

$$
|\psi(q, t)|^{2}=\left(\frac{1}{2 \pi \sigma(t)^{2}}\right)^{1 / 2} \exp \left[-\frac{(q-a)^{2}}{2 \sigma(t)^{2}}\right]
$$

where

$$
\sigma(t)=\sqrt{\sigma_{0}^{2}+\frac{t^{2}}{4 m^{2} \sigma_{0}^{2}}}
$$

Hint: Use eqs. (1) and (2).

Problem 3: Non-standard path-integral representation
Consider the Lagrangian with a position-dependent "mass"

$$
L=\frac{1}{2} m(q) \dot{q}^{2} .
$$

Thus the canonical momentum is $p=m(q) \dot{q}$ and the Hamiltonian $H=\frac{1}{2 m(q)} p^{2}$. Show that the path-integral representation of the transition amplitude has the form

$$
\left\langle q^{\prime}\right| e^{-i \widehat{H}\left(t^{\prime}-t\right)}|q\rangle=\mathcal{N} \int \mathcal{D} q \exp \left[i \int_{t}^{t^{\prime}} d s\left(L(q(s), \dot{q}(s))-\frac{i}{2} \tilde{\mathcal{N}} \log m(q(s))\right)\right],
$$

where $\widetilde{\mathcal{N}} \equiv " \lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}$ " is an infinite constant, similar to \mathcal{N}.
Remark 1: Recall that the path integral is usually ill-defined in the continuum limit, where the discretization spacing Δt goes to zero. The continuum limit can only be taken for observable quantities.
Remark 2: This is a counterexample, given by Lee and Yang (1962), showing that the pathintegral representation is not always of the "standard" form.

Problem 4: Poles in correlation functions

Consider a Fourier transform of the vacuum expectation value of a time-ordered product

$$
T\left(q^{2}\right)=i \int d^{4} x e^{i q x}\langle\Omega| \mathrm{T}\left\{\widehat{A}(x) \widehat{A}^{\dagger}(0)\right\}|\Omega\rangle,
$$

where the local operator $\widehat{A}(x)$ can be either elementary scalar field operator like $\widehat{\phi}(x)$ or composite operator like $\widehat{\phi}^{2}(x)$ etc. The main restriction is that \widehat{A} is composed of fields at the same space-time point, which makes it "local".
Suppose \widehat{A} has a non-zero matrix element between the vacuum and the one-particle state $|\vec{p}\rangle=\hat{a}_{\vec{p}}^{\dagger}|\Omega\rangle$. Here \vec{p} is the three-momentum and $p=(E(\vec{p}), \vec{p})$, where $E(\vec{p})=\sqrt{m^{2}+\vec{p}^{2}}$. Recall that in the relativistic normalization $\langle\vec{p} \mid \vec{q}\rangle=(2 \pi)^{3} 2 E(\vec{p}) \delta^{(3)}(\vec{p}-\vec{q})$.
Show that the function $T\left(q^{2}\right)$ considered as a function of the complex variable $q^{2}=q_{0}^{2}-\vec{q}^{2}$ has a pole in the vicinity of the point $q^{2}=m^{2}$ and we can write

$$
T\left(q^{2}\right)=\frac{|\langle\Omega| \widehat{A}(0)| \vec{q}\rangle\left.\right|^{2}}{m^{2}-q^{2}-i \epsilon}
$$

Check that this agrees with the expected result of the propagator in the non-interacting scalar field theory if $\widehat{A}=\widehat{\phi}$.
Hints:

- Write out the T product explicitly (in terms of Heaviside functions Θ) and insert

$$
1_{\text {one-particle subspace }}=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E(\vec{p})}|\vec{p}\rangle\langle\vec{p}|
$$

in between the operators. Explain when inserting this "unity" is correct and when not. How does this completeness relation have to be modified to be valid more generally?

- Prove and use the relation $\langle\Omega| \widehat{A}(x)|\vec{p}\rangle=\langle\Omega| \widehat{A}(0)|\vec{p}\rangle e^{-i p x}$ (Hint: How does \widehat{A} transform under translations?)
- Use the identity

$$
\Theta(t)=\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{-\infty}^{\infty} d \tau \frac{e^{i t \tau}}{\tau-i \epsilon}
$$

